5,145 research outputs found
A level-set method for the evolution of cells and tissue during curvature-controlled growth
Most biological tissues grow by the synthesis of new material close to the
tissue's interface, where spatial interactions can exert strong geometric
influences on the local rate of growth. These geometric influences may be
mechanistic, or cell behavioural in nature. The control of geometry on tissue
growth has been evidenced in many in-vivo and in-vitro experiments, including
bone remodelling, wound healing, and tissue engineering scaffolds. In this
paper, we propose a generalisation of a mathematical model that captures the
mechanistic influence of curvature on the joint evolution of cell density and
tissue shape during tissue growth. This generalisation allows us to simulate
abrupt topological changes such as tissue fragmentation and tissue fusion, as
well as three dimensional cases, through a level-set-based method. The
level-set method developed introduces another Eulerian field than the level-set
function. This additional field represents the surface density of tissue
synthesising cells, anticipated at future locations of the interface. Numerical
tests performed with this level-set-based method show that numerical
conservation of cells is a good indicator of simulation accuracy, particularly
when cusps develop in the tissue's interface. We apply this new model to
several situations of curvature-controlled tissue evolutions that include
fragmentation and fusion.Comment: 15 pages, 10 figures, 3 supplementary figure
Graphitic-BN Based Metal-free Molecular Magnets From A First Principle Study
We perform a first principle calculation on the electronic properties of
carbon doped graphitic boron nitride graphitic BN. It was found that carbon
substitution for either boron or nitrogen atom in graphitic BN can induce
spontaneous magnetization. Calculations based on density functional theory with
the local spin density approximation on the electronic band structure revealed
a spin polarized, dispersionless band near the Fermi energy. Spin density
contours showed that the magnetization density originates from the carbon atom.
The magnetization can be attributed to the carbon 2p electron. Charge density
distribution shows that the carbon atom forms covalent bonds with its three
nearest neighbourhood. The spontaneous magnetization survives the curvature
effect in BN nanotubes, suggesting the possibility of molecular magnets made
from BN. Compared to other theoretical models of light-element or metal-free
magnetic materials, the carbon-doped BN are more experimentally accessible and
can be potentially useful.Comment: 8 pages, 4 figure
Non-linear Evolution of Matter Power Spectrum in Modified Theory of Gravity
We present a formalism to calculate the non-linear matter power spectrum in
modified gravity models that explain the late-time acceleration of the Universe
without dark energy. Any successful modified gravity models should contain a
mechanism to recover General Relativity (GR) on small scales in order to avoid
the stringent constrains on deviations from GR at solar system scales. Based on
our formalism, the quasi non-linear power spectrum in the
Dvali-Gabadadze-Porratti (DGP) braneworld models and gravity models are
derived by taking into account the mechanism to recover GR properly. We also
extrapolate our predictions to fully non-linear scales using the Parametrized
Post Friedmann (PPF) framework. In gravity models, the predicted
non-linear power spectrum is shown to reproduce N-body results. We find that
the mechanism to recover GR suppresses the difference between the modified
gravity models and dark energy models with the same expansion history, but the
difference remains large at weakly non-linear regime in these models. Our
formalism is applicable to a wide variety of modified gravity models and it is
ready to use once consistent models for modified gravity are developed.Comment: 25 pages, 8 figures, comparison to N-body simulations in DGP added,
published in PR
Dynamic Matter-Wave Pulse Shaping
In this paper we discuss possibilities to manipulate a matter-wave with
time-dependent potentials. Assuming a specific setup on an atom chip, we
explore how one can focus, accelerate, reflect, and stop an atomic wave packet,
with, for example, electric fields from an array of electrodes. We also utilize
this method to initiate coherent splitting. Special emphasis is put on the
robustness of the control schemes. We begin with the wave packet of a single
atom, and extend this to a BEC, in the Gross-Pitaevskii picture. In analogy to
laser pulse shaping with its wide variety of applications, we expect this work
to form the base for additional time-dependent potentials eventually leading to
matter-wave pulse shaping with numerous application
Repulsive Fermions in Optical Lattices: Phase separation versus Coexistence of Antiferromagnetism and d-Superfluidity
We investigate a system of fermions on a two-dimensional optical square
lattice in the strongly repulsive coupling regime. In this case, the
interactions can be controlled by laser intensity as well as by Feshbach
resonance. We compare the energetics of states with resonating valence bond
d-wave superfluidity, antiferromagnetic long range order and a homogeneous
state with coexistence of superfluidity and antiferromagnetism. We show that
the energy density of a hole has a minimum at doping that
signals phase separation between the antiferromagnetic and d-wave paired
superfluid phases. The energy of the phase-separated ground state is however
found to be very close to that of a homogeneous state with coexisting
antiferromagnetic and superfluid orders. We explore the dependence of the
energy on the interaction strength and on the three-site hopping terms and
compare with the nearest neighbor hopping {\it t-J} model
Quantum Monte Carlo simulations of a particle in a random potential
In this paper we carry out Quantum Monte Carlo simulations of a quantum
particle in a one-dimensional random potential (plus a fixed harmonic
potential) at a finite temperature. This is the simplest model of an interface
in a disordered medium and may also pertain to an electron in a dirty metal. We
compare with previous analytical results, and also derive an expression for the
sample to sample fluctuations of the mean square displacement from the origin
which is a measure of the glassiness of the system. This quantity as well as
the mean square displacement of the particle are measured in the simulation.
The similarity to the quantum spin glass in a transverse field is noted. The
effect of quantum fluctuations on the glassy behavior is discussed.Comment: 23 pages, 7 figures included as eps files, uses RevTeX. Accepted for
publication in J. of Physics A: Mathematical and Genera
Fluctuations Do Matter: Large Noise-Enhanced Halos in Charged-Particle Beams
The formation of beam halos has customarily been described in terms of a
particle-core model in which the space-charge field of the oscillating core
drives particles to large amplitudes. This model involves parametric resonance
and predicts a hard upper bound to the orbital amplitude of the halo particles.
We show that the presence of colored noise due to space-charge fluctuations
and/or machine imperfections can eject particles to much larger amplitudes than
would be inferred from parametric resonance alone.Comment: 13 pages total, including 5 figure
One-loop fermionic corrections to the instanton transition in two dimensional chiral Higgs model
The one-loop fermionic contribution to the probability of an instanton
transition with fermion number violation is calculated in the chiral Abelian
Higgs model in 1+1 dimensions, where the fermions have a Yukawa coupling to the
scalar field. The dependence of the determinant on fermionic, scalar and vector
mass is determined. We show in detail how to renormalize the fermionic
determinant in partial wave analysis, which is convenient for computations.Comment: 36 pages, 5 figure
A phenomenological model of galaxy clusters
We present a simple model to describe the dark matter density, the gas
density, and the gas temperature profiles of galaxy clusters. Analytical
expressions for these quantities are given in terms of only five free
parameters with a clear physical meaning: the mass M of the dark matter halo
(or the characteristic temperature T_0), the characteristic scale radius a, the
cooling radius in units of a (0<alpha<1), the central temperature in units of
T_0 (0<t<1), and the asymptotic baryon fraction in units of the cosmic value
(f~1). It is shown that our model is able to reproduce the three-dimensional
density and temperature profiles inferred from X-ray observations of real
clusters within a 20 per cent accuracy over most of the radial range. Some
possible applications are briefly discussed.Comment: 7 pages, 4 figures, submitted to MNRA
Long range scattering effects on spin Hall current in -type bulk semiconductors
Employing a nonequilibrium Green's function approach, we examine the effects
of long-range hole-impurity scattering on spin-Hall current in -type bulk
semiconductors within the framework of the self-consistent Born approximation.
We find that, contrary to the null effect of short-range scattering on
spin-Hall current, long-range collisions do produce a nonvanishing contribution
to the spin-Hall current, which is independent of impurity density in the
diffusive regime and relates only to hole states near the Fermi surface. The
sign of this contribution is opposite to that of the previously predicted
disorder-independent spin-Hall current, leading to a sign change of the total
spin-Hall current as hole density varies. Furthermore, we also make clear that
the disorder-independent spin-Hall effect is a result of an interband
polarization directly induced by the dc electric field with contributions from
all hole states in the Fermi sea.Comment: 9 pages, 1 figur
- …
