1,259 research outputs found

    Ultra-Low-Power Superconductor Logic

    Full text link
    We have developed a new superconducting digital technology, Reciprocal Quantum Logic, that uses AC power carried on a transmission line, which also serves as a clock. Using simple experiments we have demonstrated zero static power dissipation, thermally limited dynamic power dissipation, high clock stability, high operating margins and low BER. These features indicate that the technology is scalable to far more complex circuits at a significant level of integration. On the system level, Reciprocal Quantum Logic combines the high speed and low-power signal levels of Single-Flux- Quantum signals with the design methodology of CMOS, including low static power dissipation, low latency combinational logic, and efficient device count.Comment: 7 pages, 5 figure

    Asymptotic behavior of age-structured and delayed Lotka-Volterra models

    Full text link
    In this work we investigate some asymptotic properties of an age-structured Lotka-Volterra model, where a specific choice of the functional parameters allows us to formulate it as a delayed problem, for which we prove the existence of a unique coexistence equilibrium and characterize the existence of a periodic solution. We also exhibit a Lyapunov functional that enables us to reduce the attractive set to either the nontrivial equilibrium or to a periodic solution. We then prove the asymptotic stability of the nontrivial equilibrium where, depending on the existence of the periodic trajectory, we make explicit the basin of attraction of the equilibrium. Finally, we prove that these results can be extended to the initial PDE problem.Comment: 29 page

    Atomic motion in tilted optical lattices

    Full text link
    This paper presents a formalism describing the dynamics of a quantum particle in a one-dimensional, time-dependent, tilted lattice. The formalism uses the Wannier-Stark states, which are localized in each site of the lattice, and provides a simple framework allowing fully-analytical developments. Analytic solutions describing the particle motion are explicit derived, and the resulting dynamics is studied.Comment: 6 pages, 2 figs, submitted to EPJD, Springer Verlag styl

    Study protocol for a randomised controlled trial of invasive versus conservative management of primary spontaneous pneumothorax

    Get PDF
    INTRODUCTION: Current management of primary spontaneous pneumothorax (PSP) is variable, with little evidence from randomised controlled trials to guide treatment. Guidelines emphasise intervention in many patients, which involves chest drain insertion, hospital admission and occasionally surgery. However, there is evidence that conservative management may be effective and safe, and it may also reduce the risk of recurrence. Significant questions remain regarding the optimal initial approach to the management of PSP

    Isospin Dependence of the Spin-Orbit Force and Effective Nuclear Potentials,

    Full text link
    The isospin dependence of the spin-orbit potential is investigated for an effective Skyrme-like energy functional suitable for density dependent Hartree-Fock calculations. The magnitude of the isospin dependence is obtained from a fit to experimental data on finite spherical nuclei. It is found to be close to that of relativistic Hartree models. Consequently, the anomalous kink in the isotope shifts of Pb nuclei is well reproduced.Comment: Revised, 11 pages (Revtex) and 2 figures available upon request, Preprint MPA-833, Physical Review Letters (in press)

    Anatomy of nuclear shape transition in the relativistic mean field theory

    Get PDF
    A detailed microscopic study of the temperature dependence of the shapes of some rare-earth nuclei is made in the relativistic mean field theory. Analyses of the thermal evolution of the single-particle orbitals and their occupancies leading to the collapse of the deformation are presented. The role of the non-linear σ\sigma-field on the shape transition in different nuclei is also investigated; in its absence the shape transition is found to be sharper.Comment: REVTEX file (13pages), 12 figures, Phys. Rev. C(in press), \documentstyle[aps,preprint]{revtex

    Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome

    Get PDF
    Transposable elements (TEs) have no longer been totally considered as “junk DNA” for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C(chromosomeconformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r=0.9, P<2.2×1016; IMR90 fibroblasts: r = 0.94, P < 2.2 × 1016) and also have a significant positive correlation withsomeremote functional DNA elements like enhancers and promoters (Enhancer: hESC: r=0.997, P=2.3×10−4; IMR90: r=0.934, P=2×10−2; Promoter: hESC: r = 0.995, P = 3.8 × 10−4; IMR90: r = 0.996, P = 3.2 × 10−4). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes

    Approximate particle number projection for finite range density dependent forces

    Get PDF
    The Lipkin-Nogami method is generalized to deal with finite range density dependent forces. New expressions are derived and realistic calculations with the Gogny force are performed for the nuclei 164^{164}Er and 168^{168}Er. The sharp phase transition predicted by the mean field approximation is washed out by the Lipkin-Nogami approach; a much better agreement with the experimental data is reached with the new approach than with the Hartree-Fock_Bogoliubov one, specially at high spins.Comment: 5 pages, RevTeX 3.0, 3 postscript figures included using uufiles. Submitted to Phys. Rev. Let
    corecore