4,876 research outputs found
The Random Bit Complexity of Mobile Robots Scattering
We consider the problem of scattering robots in a two dimensional
continuous space. As this problem is impossible to solve in a deterministic
manner, all solutions must be probabilistic. We investigate the amount of
randomness (that is, the number of random bits used by the robots) that is
required to achieve scattering. We first prove that random bits are
necessary to scatter robots in any setting. Also, we give a sufficient
condition for a scattering algorithm to be random bit optimal. As it turns out
that previous solutions for scattering satisfy our condition, they are hence
proved random bit optimal for the scattering problem. Then, we investigate the
time complexity of scattering when strong multiplicity detection is not
available. We prove that such algorithms cannot converge in constant time in
the general case and in rounds for random bits optimal
scattering algorithms. However, we present a family of scattering algorithms
that converge as fast as needed without using multiplicity detection. Also, we
put forward a specific protocol of this family that is random bit optimal ( random bits are used) and time optimal ( rounds are used).
This improves the time complexity of previous results in the same setting by a
factor. Aside from characterizing the random bit complexity of mobile
robot scattering, our study also closes its time complexity gap with and
without strong multiplicity detection (that is, time complexity is only
achievable when strong multiplicity detection is available, and it is possible
to approach it as needed otherwise)
Balanced Allocations: A Simple Proof for the Heavily Loaded Case
We provide a relatively simple proof that the expected gap between the
maximum load and the average load in the two choice process is bounded by
, irrespective of the number of balls thrown. The theorem
was first proven by Berenbrink et al. Their proof uses heavy machinery from
Markov-Chain theory and some of the calculations are done using computers. In
this manuscript we provide a significantly simpler proof that is not aided by
computers and is self contained. The simplification comes at a cost of weaker
bounds on the low order terms and a weaker tail bound for the probability of
deviating from the expectation
Magnetic trapping of metastable atomic strontium
We report the magnetic trapping of metastable atomic strontium. Atoms
are cooled in a magneto-optical trap (MOT) operating on the dipole allowed
transition at 461 nm. Decay via
continuously loads a magnetic trap formed by the quadrupole magnetic field of
the MOT. Over atoms at a density of cm and
temperature of 1 mK are trapped. The atom temperature is significantly lower
than what would be expected from the kinetic and potential energy of atoms as
they are transferred from the MOT. This suggests that thermalization and
evaporative cooling are occurring in the magnetic trap.Comment: This paper has been accepted by PR
Crohn's disease activity index and Vienna classification - Is it worthwhile to calculate before surgery?
Background: Crohn's disease (CD) patients with increased disease activity may reveal an increased risk for perioperative complications. The `Crohn's disease activity index' (CDAI) and the `Vienna classification' (VC) were developed for standardized disease activity estimations. The significance of these scores to predict extent, type and early outcome of surgery in CD patients was analyzed. Methods: In 179 surgically treated CD patients, the CDAI and VC were assessed from a prospective database. Relations of the scores with CD risk factors, type, number, location and complications of surgery were analyzed. Results: VC behavior and location subtypes were associated with distinct types of surgery (i.e. `strictureplasty' in `stricturing disease', `colon surgery' in `colon involvement'), but not with surgery type and extent or outcome. Surgery extent (i.e. with 5 vs. 3 `surgical sites' 425 +/- 25 vs. 223.3 +/- 25) and complications (357.1 +/- 36.9 (with) vs. 244.4 +/- 13 (without)) were associated with elevated CDAI levels; however, nicotine abuse remained the only significant risk factor for perioperative complications after multiple logistic regression. Conclusion: The significance of VC or CDAI for predicting the extent of surgery or complications is limited. None of the tested variables except preoperative nicotine abuse influenced the likelihood for perioperative complications. Copyright (c) 2006 S. Karger AG, Base
Resonance fluorescence of a trapped three-level atom
We investigate theoretically the spectrum of resonance fluorescence of a
harmonically trapped atom, whose internal transitions are --shaped and
driven at two-photon resonance by a pair of lasers, which cool the
center--of--mass motion. For this configuration, photons are scattered only due
to the mechanical effects of the quantum interaction between light and atom. We
study the spectrum of emission in the final stage of laser--cooling, when the
atomic center-of-mass dynamics is quantum mechanical and the size of the wave
packet is much smaller than the laser wavelength (Lamb--Dicke limit). We use
the spectral decomposition of the Liouville operator of the master equation for
the atomic density matrix and apply second order perturbation theory. We find
that the spectrum of resonance fluorescence is composed by two narrow sidebands
-- the Stokes and anti-Stokes components of the scattered light -- while all
other signals are in general orders of magnitude smaller. For very low
temperatures, however, the Mollow--type inelastic component of the spectrum
becomes visible. This exhibits novel features which allow further insight into
the quantum dynamics of the system. We provide a physical model that interprets
our results and discuss how one can recover temperature and cooling rate of the
atom from the spectrum. The behaviour of the considered system is compared with
the resonance fluorescence of a trapped atom whose internal transition consists
of two-levels.Comment: 11 pages, 4 Figure
Dark resonances as a probe for the motional state of a single ion
Single, rf-trapped ions find various applications ranging from metrology to
quantum computation. High-resolution interrogation of an extremely weak
transition under best observation conditions requires an ion almost at rest. To
avoid line-broadening effects such as the second order Doppler effect or rf
heating in the absence of laser cooling, excess micromotion has to be
eliminated as far as possible. In this work the motional state of a confined
three-level ion is probed, taking advantage of the high sensitivity of observed
dark resonances to the trapped ion's velocity. Excess micromotion is controlled
by monitoring the dark resonance contrast with varying laser beam geometry. The
influence of different parameters such as the cooling laser intensity has been
investigated experimentally and numerically
Near Resonant Spatial Images of Confined Bose-Einstein Condensates in the '4D' Magnetic Bottle
We present quantitative measurements of the spatial density profile of
Bose-Einstein condensates of sodium atoms confined in a new '4D' magnetic
bottle. The condensates are imaged in transmission with near resonant laser
light. We demonstrate that the Thomas-Fermi surface of a condensate can be
determined to better than 1%. More generally, we obtain excellent agreement
with mean-field theory. We conclude that precision measurements of atomic
scattering lengths and interactions between phase separated cold atoms in a
harmonic trap can be measured with high precision using this method.Comment: 15 pages, 3 figures. Submitted 10/30/97, accepted for publication in
Phys. Rev. A Rapid Com
Intergroup conflict management strategies from a nobel peace laureate: The case of Jose Ramos-Horta
We report on the case of Dr. José Ramos-Horta (JRH), a 1996 Nobel Peace Laureate, former President of East Timor, and current envoy of the United Nations to Guinea-Bissau. JRH agreed to an interview detailing the peace building strategies he has used to manage conflicts. The transcript of his Nobel Laureate acceptance speech was also analysed to strengthen the overall narrative. Our findings suggest two higher-order themes: (1) psycho-social skills, and (2) social networking. Specifically, JRH uses active listening, mindful breaks, and awareness of media trends to create personal and strategic networking contacts, which are critical elements in managing conflict
Rabies screen reveals GPe control of cocaine-triggered plasticity.
Identification of neural circuit changes that contribute to behavioural plasticity has routinely been conducted on candidate circuits that were preselected on the basis of previous results. Here we present an unbiased method for identifying experience-triggered circuit-level changes in neuronal ensembles in mice. Using rabies virus monosynaptic tracing, we mapped cocaine-induced global changes in inputs onto neurons in the ventral tegmental area. Cocaine increased rabies-labelled inputs from the globus pallidus externus (GPe), a basal ganglia nucleus not previously known to participate in behavioural plasticity triggered by drugs of abuse. We demonstrated that cocaine increased GPe neuron activity, which accounted for the increase in GPe labelling. Inhibition of GPe activity revealed that it contributes to two forms of cocaine-triggered behavioural plasticity, at least in part by disinhibiting dopamine neurons in the ventral tegmental area. These results suggest that rabies-based unbiased screening of changes in input populations can identify previously unappreciated circuit elements that critically support behavioural adaptations
- …
