260 research outputs found
Next-to-leading order static gluon self-energy for anisotropic plasmas
In this paper the structure of the next-to-leading (NLO) static gluon self
energy for an anisotropic plasma is investigated in the limit of a small
momentum space anisotropy. Using the Ward identities for the static hard-loop
(HL) gluon polarization tensor and the (nontrivial) static HL vertices, we
derive a comparatively compact form for the complete NLO correction to the
structure function containing the space-like pole associated with magnetic
instabilities. On the basis of a calculation without HL vertices, it has been
conjectured that the imaginary part of this structure function is nonzero,
rendering the space-like poles integrable. We show that there are both positive
and negative contributions when HL vertices are included, highlighting the
necessity of a complete numerical evaluation, for which the present work
provides the basis.Comment: 9 pages, 2 figure
Thermalization and the chromo-Weibel instability
Despite the apparent success of ideal hydrodynamics in describing the
elliptic flow data which have been produced at Brookhaven National Lab's
Relativistic Heavy Ion Collider, one lingering question remains: is the use of
ideal hydrodynamics at times t < 1 fm/c justified? In order to justify its use
a method for rapidly producing isotropic thermal matter at RHIC energies is
required. One of the chief obstacles to early isotropization/thermalization is
the rapid longitudinal expansion of the matter during the earliest times after
the initial nuclear impact. As a result of this expansion the parton
distribution functions become locally anisotropic in momentum space. In
contrast to locally isotropic plasmas anisotropic plasmas have a spectrum of
soft unstable modes which are characterized by exponential growth of transverse
chromo-magnetic/-electric fields at short times. This instability is the QCD
analogue of the Weibel instability of QED. Parametrically the chromo-Weibel
instability provides the fastest method for generation of soft background
fields and dominates the short-time dynamics of the system.Comment: 8 pages, 4 figures, Invited plenary talk given at the 19th
International Conference on Ultrarelativistic Nucleus-Nucleus Collisions:
Quark Matter 2006 (QM 2006), Shanghai, China, 14-20 Nov 200
Equation of state of the hot dense matter in a multi-phase transport model
Within the framework of a multi-phase transport model, we study the equation
of state and pressure anisotropy of the hot dense matter produced in central
relativistic heavy ion collisions. Both are found to depend on the
hadronization scheme and scattering cross sections used in the model.
Furthermore, only partial thermalization is achieved in the produced matter as
a result of its fast expansion
The graviton self-energy in thermal quantum gravity
We show generally that in thermal gravity, the one-particle irreducible
2-point function depends on the choice of the basic graviton fields. We derive
the relevant properties of a physical graviton self-energy, which is
independent of the parametrization of the graviton field. An explicit
expression for the graviton self-energy at high-temperature is given to
one-loop order.Comment: 13 pages, 2 figure
Electric fields in plasmas under pulsed currents
Electric fields in a plasma that conducts a high-current pulse are measured
as a function of time and space. The experiment is performed using a coaxial
configuration, in which a current rising to 160 kA in 100 ns is conducted
through a plasma that prefills the region between two coaxial electrodes. The
electric field is determined using laser spectroscopy and line-shape analysis.
Plasma doping allows for 3D spatially resolved measurements. The measured peak
magnitude and propagation velocity of the electric field is found to match
those of the Hall electric field, inferred from the magnetic-field front
propagation measured previously.Comment: 13 pages, 13 figures, submitted to PR
The 3-graviton vertex function in thermal quantum gravity
The high temperature limit of the 3-graviton vertex function is studied in
thermal quantum gravity, to one loop order. The leading () contributions
arising from internal gravitons are calculated and shown to be twice the ones
associated with internal scalar particles, in correspondence with the two
helicity states of the graviton. The gauge invariance of this result follows in
consequence of the Ward and Weyl identities obeyed by the thermal loops, which
are verified explicitly.Comment: 19 pages, plain TeX, IFUSP/P-100
Energy loss in a strongly coupled anisotropic plasma
We study the energy loss of a rotating infinitely massive quark moving, at
constant velocity, through an anisotropic strongly-coupled N=4 plasma from
holography. It is shown that, similar to the isotropic plasma, the energy loss
of the rotating quark is due to either the drag force or radiation with a
continuous crossover from drag-dominated regime to the radiation dominated
regime. We find that the anisotropy has a significant effect on the energy loss
of the heavy quark, specially in the crossover regime. We argue that the energy
loss due to radiation in anisotropic media is less than the isotropic case.
Interestingly this is similar to analogous calculations for the energy loss in
weakly coupled anisotropic plasma.Comment: 26+1 pages, 10 figures, typos fixe
Inverse magnetic catalysis in field theory and gauge-gravity duality
We investigate the surface of the chiral phase transition in the
three-dimensional parameter space of temperature, baryon chemical potential and
magnetic field in two different approaches, the field-theoretical
Nambu-Jona-Lasinio (NJL) model and the holographic Sakai-Sugimoto model. The
latter is a top-down approach to a gravity dual of QCD with an asymptotically
large number of colors and becomes, in a certain limit, dual to an NJL-like
model. Our main observation is that, at nonzero chemical potential, a magnetic
field can restore chiral symmetry, in apparent contrast to the phenomenon of
magnetic catalysis. This "inverse magnetic catalysis" occurs in the
Sakai-Sugimoto model and, for sufficiently large coupling, in the NJL model and
is related to the physics of the lowest Landau level. While in most parts our
discussion is a pedagogical review of previously published results, we include
new analytical results for the NJL approach and a thorough comparison of
inverse magnetic catalysis in the two approaches.Comment: 37 pages, 11 figures, to appear in Lect. Notes Phys. "Strongly
interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K.
Landsteiner, A. Schmitt, H.-U. Ye
Kinetic vs. Thermal-Field-Theory Approach to Cosmological Perturbations
A closed set of equations for the evolution of linear perturbations of
homogeneous, isotropic cosmological models can be obtained in various ways. The
simplest approach is to assume a macroscopic equation of state, e.g.\ that of a
perfect fluid. For a more refined description of the early universe, a
microscopic treatment is required. The purpose of this paper is to compare the
approach based on classical kinetic theory to the more recent
thermal-field-theory approach. It is shown that in the high-temperature limit
the latter describes cosmological perturbations supported by collisionless,
massless matter, wherein it is equivalent to the kinetic theory approach. The
dependence of the perturbations in a system of a collisionless gas and a
perfect fluid on the initial data is discussed in some detail. All singular and
regular solutions are found analytically.Comment: 31 pages, 10 figures (uu encoded ps-file appended), REVTEX 3.0, DESY
94-040 / TUW-93-2
Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model
In the chiral magnetic effect an imbalance in the number of left- and
right-handed quarks gives rise to an electromagnetic current parallel to the
magnetic field produced in noncentral heavy-ion collisions. The chiral
imbalance may be induced by topologically nontrivial gluon configurations via
the QCD axial anomaly, while the resulting electromagnetic current itself is a
consequence of the QED anomaly. In the Sakai-Sugimoto model, which in a certain
limit is dual to large-N_c QCD, we discuss the proper implementation of the QED
axial anomaly, the (ambiguous) definition of chiral currents, and the
calculation of the chiral magnetic effect. We show that this model correctly
contains the so-called consistent anomaly, but requires the introduction of a
(holographic) finite counterterm to yield the correct covariant anomaly.
Introducing net chirality through an axial chemical potential, we find a
nonvanishing vector current only before including this counterterm. This seems
to imply the absence of the chiral magnetic effect in this model. On the other
hand, for a conventional quark chemical potential and large magnetic field,
which is of interest in the physics of compact stars, we obtain a nontrivial
result for the axial current that is in agreement with previous calculations
and known exact results for QCD.Comment: 35 pages, 4 figures, v2: added comments about frequency-dependent
conductivity at the end of section 4; references added; version to appear in
JHE
- …
