1,174 research outputs found
EL ASEGURAMIENTO DE LA CALIDAD COMO POLÍTICA PÚBLICA PARA LA EDUCACIÓN SUPERIOR
La educación superior tiene efectos, resultados e impactos de diversa índole, constituyendo un instrumento para el desarrollo del capital humano de un país, la generación de conocimiento y el bienestar ciudadano. Su importancia creciente ha despertado la preocupación por su calidad, considerando los cambios ocurridos en el escenario de educación superior, el tipo de estudiante que a ella llega, la ampliación de la cobertura y la oferta académica, de calidad diversa, la falta de sistemas de información pública confiables, la mercantilización de la formación, además de la enorme relevancia que la producción del conocimiento tiene para el desarrollo de las naciones. Este contexto ha contribuido a la implementación de políticas de calidad, incluyendo desde instrumentos legales a incentivos financieros y no financieros. La percepción desde cada actor del sistema instituciones-Estado-mercado es diferente, y si bien resulta positivo en suma, existen efectos no deseables. En este estudio se analizan los procesos de aseguramiento de la calidad como política pública para la mejora de la calidad de la formación. El cambio en el rol del Estado, los organismos generados para la implementación de las políticas y sus desafíos son parte de una política pública que ha llegado para instalarse definitivamente
Discurso pronunciado por el Sr. Telesforo Montejo y Robledo... con motivo de su interpelación sobre la venta de varios terrenos en los montes de Balsaín.
Copia digital : Junta de Castilla y León. Consejería de Cultura y Turismo, 201
Structure of krypton isotopes within the interacting boson model derived from the Gogny energy density functional
The evolution and coexistence of the nuclear shapes as well as the
corresponding low-lying collective states and electromagnetic transition rates
are investigated along the Krypton isotopic chain within the framework of the
interacting boson model (IBM). The IBM Hamiltonian is determined through
mean-field calculations based on the several parametrizations of the Gogny
energy density functional and the relativistic mean-field Lagrangian. The
mean-field energy surfaces, as functions of the axial and triaxial
quadrupole deformations, are mapped onto the expectation value of the
interacting-boson Hamiltonian that explicitly includes the particle-hole
excitations. The resulting boson Hamiltonian is then used to compute low-energy
excitation spectra as well as E2 and E0 transition probabilities for
Kr. Our results point to a number of examples of the prolate-oblate
shape transitions and coexistence both on the neutron-deficient and
neutron-rich sides. A reasonable agreement with the available experimental data
is obtained for the considered nuclear properties.Comment: 13 pages, 9 figures, 2 table
Intermittency at critical transitions and aging dynamics at edge of chaos
We recall that, at both the intermittency transitions and at the Feigenbaum
attractor in unimodal maps of non-linearity of order , the dynamics
rigorously obeys the Tsallis statistics. We account for the -indices and the
generalized Lyapunov coefficients that characterize the
universality classes of the pitchfork and tangent bifurcations. We identify the
Mori singularities in the Lyapunov spectrum at the edge of chaos with the
appearance of a special value for the entropic index . The physical area of
the Tsallis statistics is further probed by considering the dynamics near
criticality and glass formation in thermal systems. In both cases a close
connection is made with states in unimodal maps with vanishing Lyapunov
coefficients.Comment: Proceedings of: STATPHYS 2004 - 22nd IUPAP International Conference
on Statistical Physics, National Science Seminar Complex, Indian Institute of
Science, Bangalore, 4-9 July 2004. Pramana, in pres
UNIVERSIDAD PARA ARMAR. LOS DESAFÍOS DE UNA UNIVERSIDAD EMPRENDEDORA
El desarrollo de un país con potencial de crecimiento es posible considerando como instrumento la gestión del conocimiento. En este marco, se plantea una Universidadque se relaciona y trabaja con la Comunidad, la Empresa y las Instituciones a las cuales ofrece sus servicios, educando al mismo tiempo. A través de dicha instancia se diseñan diversos modos de participación en el desarrollo, los que aparecen como respuesta a las necesidades de la comunidad y permiten la actuación de la Universidad en el medio social de una manera más comprometida y más ágil y en un entorno “versátil e inespacial”. La acción de dicha instancia está conformada por el diseño y gestión de los proyectos de desarrollo e innovación, las opciones de formación continua, con certificación de saberes y programas de capacitación específicos, que involucran a los profesores, investigadores, alumnos, formadores y consultores externos, contribuyendo a fortalecer el compromiso de la comunidad académica con la comunidad social. Así, el conocimiento es producido en el contexto dela aplicación, en una organización reticular, que se valida por su aplicación no solo en el contexto original, sino en los contextos sucesivos. Además, plantea la responsabilidad y la reflexión social ante los riesgos de aplicación de los descubrimientos científicos y es flexible y dinámico
Renormalization group structure for sums of variables generated by incipiently chaotic maps
We look at the limit distributions of sums of deterministic chaotic variables
in unimodal maps and find a remarkable renormalization group (RG) structure
associated to the operation of increment of summands and rescaling. In this
structure - where the only relevant variable is the difference in control
parameter from its value at the transition to chaos - the trivial fixed point
is the Gaussian distribution and a novel nontrivial fixed point is a
multifractal distribution that emulates the Feigenbaum attractor, and is
universal in the sense of the latter. The crossover between the two fixed
points is explained and the flow toward the trivial fixed point is seen to be
comparable to the chaotic band merging sequence. We discuss the nature of the
Central Limit Theorem for deterministic variables.Comment: 14 pages, 5 figures, to appear in Journal of Statistical Mechanic
Stationary distributions of sums of marginally chaotic variables as renormalization group fixed points
We determine the limit distributions of sums of deterministic chaotic
variables in unimodal maps assisted by a novel renormalization group (RG)
framework associated to the operation of increment of summands and rescaling.
In this framework the difference in control parameter from its value at the
transition to chaos is the only relevant variable, the trivial fixed point is
the Gaussian distribution and a nontrivial fixed point is a multifractal
distribution with features similar to those of the Feigenbaum attractor. The
crossover between the two fixed points is discussed and the flow toward the
trivial fixed point is seen to consist of a sequence of chaotic band mergers.Comment: 7 pages, 2 figures, to appear in Journal of Physics: Conf.Series
(IOP, 2010
Fundamental measure theory for lattice fluids with hard core interactions
We present the extension of Rosenfeld's fundamental measure theory to lattice
models by constructing a density functional for d-dimensional mixtures of
parallel hard hypercubes on a simple hypercubic lattice. The one-dimensional
case is exactly solvable and two cases must be distinguished: all the species
with the same lebgth parity (additive mixture), and arbitrary length parity
(nonadditive mixture). At the best of our knowledge, this is the first time
that the latter case is considered. Based on the one-dimensional exact
functional form, we propose the extension to higher dimensions by generalizing
the zero-dimensional cavities method to lattice models. This assures the
functional to have correct dimensional crossovers to any lower dimension,
including the exact zero-dimensional limit. Some applications of the functional
to particular systems are also shown.Comment: 22 pages, 7 figures, needs IOPP LaTeX styles file
Approximate particle number projection for finite range density dependent forces
The Lipkin-Nogami method is generalized to deal with finite range density
dependent forces. New expressions are derived and realistic calculations with
the Gogny force are performed for the nuclei Er and Er. The
sharp phase transition predicted by the mean field approximation is washed out
by the Lipkin-Nogami approach; a much better agreement with the experimental
data is reached with the new approach than with the Hartree-Fock_Bogoliubov
one, specially at high spins.Comment: 5 pages, RevTeX 3.0, 3 postscript figures included using uufiles.
Submitted to Phys. Rev. Let
- …
