40 research outputs found
2002–2022: 20 years of e-waste regulation in the European Union and the worldwide trends in legislation and innovation technologies for a circular economy
Waste Electrical and Electronic Equipment (WEEE or e-waste) has emerged as a formidable global waste stream, reflecting the mounting demand for technology in our interconnected world. Over the past two decades, besides a world facing a rapid digital, e-mobility, and green energy transition, there has been a growing recognition across the globe, among both society and industries, regarding the hazards and opportunities linked to e-waste management. This collective consciousness has driven the adoption of best practices, including the implementation of circular economy (CE) models, fostering environmentally sustainable production and recycling processes. With a rate of around the 72% of the global population (81 countries) reached by specific regulations by 2023, this review explores the evolving landscape of international legislation and emerging technologies designed for e-waste prevention and valorization, emphasizing low-environmental impact and sustainability. Despite a prolific scientific community (papers published on e-waste grew over 1000 times in the period 2002–2022) and the rise in good practices in different countries, the modest increase of innovation patents (rate of around 50% increase) and the limited number of industrially established innovation processes demonstrates that while the advancing technologies are promising, they remain in an early, embryonic stage. This paper offers a concise review of life cycle assessments from existing literature to underpin the technological advancements discussed. These assessments provide insights into the reduced environmental footprint of various innovative processes aimed at enhancing the circular economy and incorporating them into the emerging concept of safe- and sustainable-by-design. Meanwhile, global e-waste production rose from an estimated 34 Mt in 2010 to 62 Mt in 2022, while documented proper collection and recycling only increased from 8 Mt to 13.8 Mt over the same period. This shows that e-waste generation is growing nearly five times faster than formal recycling. Furthermore, if waste management activities remain at 2022 levels, a projected economic (benefit – costs) deficit of 40 billion USD is expected by 2030. It is time for communities to reverse the trend by expanding good practices and implementing technology-economic-environment sustainable and efficient circular economy models
Consideration of the bioavailability of metal/metalloid species in freshwaters: experiences regarding the implementation of biotic ligand model-based approaches in risk assessment frameworks
After the scientific development of Biotic Ligand Models (BLMs) in recent decades these models are now considered suitable for implementation in regulatory risk assessment of metals in freshwater bodies. The approach has been developed over several years and has been described in many peer-reviewed publications. The original complex BLMs have been applied in prospective risk assessment reports for metals and metal compounds and are also recommended as suitable concepts for the evaluation of monitoring data in the context of the European Water Framework Directive. Currently, several user-friendly BLM-based bioavailability software tools are available for assessing the aquatic toxicity of a limited number of metals (mainly copper, nickel, and zinc). These tools need only a basic set of water parameters as input (e.g., pH, hardness, dissolved organic matter and dissolved metal concentration). Such tools seem appropriate to foster the implementation in routine water quality assessments. This work aims to review the existing bioavailability-based regulatory approaches and the application of available BLM-based bioavailability tools for this purpose. Advantages and possible drawbacks of these tools (e.g., feasibility, boundaries of validity) are discussed, and recommendations for further implementation are given
Global occurrence, chemical properties, and ecological impacts of e-wastes (IUPAC technical report)
The waste stream of obsolete electronic equipment grows exponentially, creating a worldwide pollution and resource problem. Electrical and electronic waste (e-waste) comprises a heterogeneous mix of glass, plastics (including flame retardants and other additives), metals (including rare earth elements) and metalloids. The e-waste issue is complex and multi-faceted. In examining the different aspects of e-waste, informal recycling in developing countries has been identified as a primary concern due to widespread illegal shipments, weak environmental as well as health and safety regulations, lack of technology and inadequate waste treatment structure. For example, Nigeria, Ghana, India, Pakistan and China have all been identified as hotspots for the disposal of e-waste. This article presents a critical examination on the chemical nature of e-waste and the resulting environmental impacts on, for example, microbial biodiversity, flora and fauna in e-waste recycling sites around the world. It highlights the different types of risk assessment approaches required when evaluating the ecological impact of e-waste. Additionally, it presents examples of chemistry playing a role in potential solutions. The information presented here will be informative to relevant stakeholders to devise integrated management strategies to tackle this global environmental concern
2002–2022: 20 years of e-waste regulation in the European Union and the worldwide trends in legislation and innovation technologies for a circular economy
Waste Electrical and Electronic Equipment (WEEE or e-waste) has emerged as a formidable global waste stream, reflecting the mounting demand for technology in our interconnected world. Over the past two decades, besides a world facing a rapid digital, e-mobility, and green energy transition, there has been a growing recognition across the globe, among both society and industries, regarding the hazards and opportunities linked to e-waste management. This collective consciousness has driven the adoption of best practices, including the implementation of circular economy (CE) models, fostering environmentally sustainable production and recycling processes. With a rate of around the 72% of the global population (81 countries) reached by specific regulations by 2023, this review explores the evolving landscape of international legislation and emerging technologies designed for e-waste prevention and valorization, emphasizing lowenvironmental impact and sustainability. Despite a prolific scientific community (papers published on e-waste grew over 1000 times in the period 2002–2022) and the rise in good practices in different countries, the modest increase of innovation patents (rate of around 50% increase) and the limited number of industrially established innovation processes demonstrates that while the advancing technologies are promising, they remain in an early, embryonic stage. This paper offers a concise review of life cycle assessments from existing literature to underpin the technological advancements discussed. These assessments provide insights into the reduced environmental footprint of various innovative processes aimed at enhancing the circular economy and incorporating them into the emerging concept of safe- and sustainable-by-design. Meanwhile, global e-waste production rose from an estimated 34 Mt in 2010 to 62 Mt in 2022, while documented proper collection and recycling only increased from 8 Mt to 13.8 Mt over the same period. This shows that ewaste generation is growing nearly five times faster than formal recycling. Furthermore, if waste management activities remain at 2022 levels, a projected economic (benefit – costs) deficit of 40 billion USD is expected by 2030. It is time for communities to reverse the trend by expanding good practices and implementing technology-economic-environment sustainable and efficient circular economy models.Environmental Biolog
A note on the use of dexamethasone for inducement of parturition of Finn × Dorset ewes
SUMMARYDexamethasone (16 mg) induced parturition in sheep when injected i n the dam on day 141 of gestation. The mean time of parturition was 49·0 ±2·18 hr after the injection, with 90% of the injected ewes lambed by the 143rd day of gestation compared with the 147th day in the control group. There was no ill effect on the ewe or the lamb born.</jats:p
