7,566 research outputs found

    Expert Finding by Capturing Organisational Knowledge from Legacy Documents

    No full text
    Organisations capitalise on their best knowledge through the improvement of shared expertise which leads to a higher level of productivity and competency. The recognition of the need to foster the sharing of expertise has led to the development of expert finder systems that hold pointers to experts who posses specific knowledge in organisations. This paper discusses an approach to locating an expert through the application of information retrieval and analysis processes to an organization’s existing information resources, with specific reference to the engineering design domain. The approach taken was realised through an expert finder system framework. It enables the relationships of heterogeneous information sources with experts to be factored in modelling individuals’ expertise. These valuable relationships are typically ignored by existing expert finder systems, which only focus on how documents relate to their content. The developed framework also provides an architecture that can be easily adapted to different organisational environments. In addition, it also allows users to access the expertise recognition logic, giving them greater trust in the systems implemented using this framework. The framework were applied to real world application and evaluated within a major engineering company

    Hole maximum density droplets of an antidot in strong magnetic fields

    Full text link
    We investigate a quantum antidot in the integer quantum Hall regime (the filling factor is two) by using a Hartree-Fock approach and by transforming the electron antidot into a system which confines holes via an electron-hole transformation. We find that its ground state is the maximum density droplet of holes in certain parameter ranges. The competition between electron-electron interactions and the confinement potential governs the properties of the hole droplet such as its spin configuration. The ground-state transitions between the droplets with different spin configurations occur as magnetic field varies. For a bell-shape antidot containing about 300 holes, the features of the transitions are in good agreement with the predictions of a recently proposed capacitive interaction model for antidots as well as recent experimental observations. We show this agreement by obtaining the parameters of the capacitive interaction model from the Hartree-Fock results. An inverse parabolic antidot is also studied. Its ground-state transitions, however, display different magnetic-field dependence from that of a bell-shape antidot. Our study demonstrates that the shape of antidot potential affects its physical properties significantly.Comment: 12 pages, 11 figure

    Symmetry breaking and unconventional charge ordering in single crystal Na2.7_{2.7}Ru4_4O9_9

    Get PDF
    The interplay of charge, spin, and lattice degrees of freedom in matter leads to various forms of ordered states through phase transitions. An important subclass of these phenomena of complex materials is charge ordering (CO), mainly driven by mixed-valence states. We discovered by combining the results of electrical resistivity (ρ\rho), specific heat, susceptibility χ\chi (\textit{T}), and single crystal x-ray diffraction (SC-XRD) that Na2.7_{2.7}Ru4_4O9_9 with the monoclinic tunnel type lattice (space group CC2/mm) exhibits an unconventional CO at room temperature while retaining metallicity. The temperature-dependent SC-XRD results show successive phase transitions with super-lattice reflections at \textbf{q}1_1=(0, 12\frac{1}{2}, 0) and \textbf{q}2_2=(0, 13\frac{1}{3}, 13\frac{1}{3}) below TC2T_{\textrm{C2}} (365 K) and only at \textbf{q}1_1=(0, 12\frac{1}{2}, 0) between TC2T_{\textrm{C2}} and TC1T_{\textrm{C1}} (630 K). We interpreted these as an evidence for the formation of an unconventional CO. It reveals a strong first-order phase transition in the electrical resistivity at TC2T_{\textrm{C2}} (cooling) = 345 K and TC2T_{\textrm{C2}} (heating) = 365 K. We argue that the origin of the phase transition is due to the localized 4dd Ru-electrons. The results of our finding reveal an unique example of Ru3+^{3+}/Ru4+^{4+} mixed valance heavy \textit{d}4^4 ions.Comment: 10 pages, 9 figure

    A Robust Exponentially Weighted Moving Average Control Chart for the Process Mean

    Get PDF
    To date, numerous extensions of the exponentially weighted moving average, EWMA charts have been made. A new robust EWMA chart for the process mean is proposed. It enables easier detection of outliers and increase sensitivity to other forms of out-of-control situation when outliers are present

    Towards Real-Time Detection and Tracking of Spatio-Temporal Features: Blob-Filaments in Fusion Plasma

    Full text link
    A novel algorithm and implementation of real-time identification and tracking of blob-filaments in fusion reactor data is presented. Similar spatio-temporal features are important in many other applications, for example, ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach can effectively make use of a large number of compute nodes to detect and track blob-filaments in real time in fusion plasma. On a set of 30GB fusion simulation data, we observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30 system at NERSC.Comment: 14 pages, 40 figure
    corecore