10,782 research outputs found

    Hawking Radiation and Analogue Experiments: A Bayesian Analysis

    Get PDF
    We present a Bayesian analysis of the epistemology of analogue experiments with particular reference to Hawking radiation. First, we prove that such experiments can be confirmatory in Bayesian terms based upon appeal to 'universality arguments'. Second, we provide a formal model for the scaling behaviour of the confirmation measure for multiple distinct realisations of the analogue system and isolate a generic saturation feature. Finally, we demonstrate that different potential analogue realisations could provide different levels of confirmation. Our results provide a basis both to formalise the epistemic value of analogue experiments that have been conducted and to advise scientists as to the respective epistemic value of future analogue experiments.Comment: 25 pages, 5 figure

    Anomalous diffusion and elastic mean free path in disorder-free multi-walled carbon nanotubes

    Full text link
    We explore the nature of anomalous diffusion of wave packets in disorder-free incommensurate multi-walled carbon nanotubes. The spectrum-averaged diffusion exponent is obtained by calculating the multifractal dimension of the energy spectrum. Depending on the shell chirality, the exponent is found to lie within the range 1/2η<11/2 \leq \eta < 1. For large unit cell mismatch between incommensurate shells, η\eta approaches the value 1/2 for diffusive motion. The energy-dependent quantum spreading reveals a complex density-of-states-dependent pattern with ballistic, super-diffusive or diffusive character.Comment: 4 pages, 4 figure

    Observation of Inter-layer Excitons in MoSe2 Single Crystals

    Full text link
    Interlayer excitons are observed coexisting with intralayer excitons in bi-layer, few-layer, and bulk MoSe2 single crystals by confocal reflection contrast spectroscopy. Quantitative analysis using the Dirac-Bloch-Equations provides unambiguous state assignment of all the measured resonances. The interlayer excitons in bilayer MoSe2 have a large binding energy of 153 meV, narrow linewidth of 20 meV, and their spectral weight is comparable to the commonly studied higher-order intralayer excitons. At the same time, the interlayer excitons are characterized by distinct transition energies and permanent dipole moments providing a promising high temperature and optically accessible platform for dipolar exciton physics

    Almost-Commutative Geometries Beyond the Standard Model II: New Colours

    Full text link
    We will present an extension of the standard model of particle physics in its almost-commutative formulation. This extension is guided by the minimal approach to almost-commutative geometries employed in [13], although the model presented here is not minimal itself. The corresponding almost-commutative geometry leads to a Yang-Mills-Higgs model which consists of the standard model and two new fermions of opposite electro-magnetic charge which may possess a new colour like gauge group. As a new phenomenon, grand unification is no longer required by the spectral action.Comment: Revised version for publication in J.Phys.A with corrected Higgs masse

    From brain to earth and climate systems: Small-world interaction networks or not?

    Full text link
    We consider recent reports on small-world topologies of interaction networks derived from the dynamics of spatially extended systems that are investigated in diverse scientific fields such as neurosciences, geophysics, or meteorology. With numerical simulations that mimic typical experimental situations we have identified an important constraint when characterizing such networks: indications of a small-world topology can be expected solely due to the spatial sampling of the system along with commonly used time series analysis based approaches to network characterization

    The stability of offshore outsourcing relationships: the role of relation specificity and client control

    Get PDF
    Offshore outsourcing of administrative and technical services has become a mainstream business practice. Increasing commoditization of business services and growing client experience with outsourcing have created a range of competitive service delivery options for client firms. Yet, data from the Offshoring Research Network (ORN) suggests that, despite increasing market options and growing client quality and cost efficiency expectations, clients typically renew provider contracts and develop longer-term relationships with providers. Based on ORN data, this paper explores drivers of this phenomenon. The findings suggest that providers promote contract renewal by making client specific investments in software, IT infrastructure and training, and by involving clients in outsourcing operations, thereby increasing relation specific joint equity and creating opportunities for client monitoring and control. Interestingly, these strategies apply to routine rather than knowledge-intensive tasks, and are more likely to be applied by large rather than small providers. Surprisingly, high degree of contract specification makes contract renewal less likely. The paper contributes to the growing literature on strategic outsourcing of business services and the importance of governance mechanisms addressing ‘hidden costs’ as well as ‘hidden benefits’ of offshore outsourcing relationships

    Neel order, ring exchange and charge fluctuations in the half-filled Hubbard model

    Full text link
    We investigate the ground state properties of the two dimensional half-filled one band Hubbard model in the strong (large-U) to intermediate coupling limit ({\it i.e.} away from the strict Heisenberg limit) using an effective spin-only low-energy theory that includes nearest-neighbor exchange, ring exchange, and all other spin interactions to order t(t/U)^3. We show that the operator for the staggered magnetization, transformed for use in the effective theory, differs from that for the order parameter of the spin model by a renormalization factor accounting for the increased charge fluctuations as t/U is increased from the t/U -> 0 Heisenberg limit. These charge fluctuations lead to an increase of the quantum fluctuations over and above those for an S=1/2 antiferromagnet. The renormalization factor ensures that the zero temperature staggered moment for the Hubbard model is a monotonously decreasing function of t/U, despite the fact that the moment of the spin Hamiltonien, which depends on transverse spin fluctuations only, in an increasing function of t/U. We also comment on quantitative aspects of the t/U and 1/S expansions.Comment: 9 pages - 3 figures - References and details to help the reader adde

    Use of Nuclear Magnetic Resonance Imaging Angiography to Follow-Up Arterial Remodeling in an Animal Model

    Get PDF
    Appropriately sized arteries in small animals may be possible models for studying the remodeling process as occurs after arterial balloon injury in humans. Magnetic resonance imaging (MRI) is able to noninvasively image tissue in vivo. To date, small animal angiog raphy models have mostly used research-dedicated instruments and resolution, which are not universally available.Experiments were carried out on a rat aorta model of remodeling in vivo (n=40). Arteries were injured by oversized balloon dilation; control arteries were uninjured. Angiography imaging was performed immediately before sacrifice with an unmodified clinical MRI unit, a 1.5 Tesla MR tomograph with a 20-cm-diameter coil. Longitudinal MRI pictures of the aorta and morphometry of tissue sections to measure luminal and arterial wall areas were analyzed with use of computer-assisted techniques.Comparison of dimensions demonstrated correlation between MRI and histology measurements of the lumen. MRI and morphometry showed a gradual increase in mean luminal area over 6 weeks following injury. The lumen increase correlated with total arterial area and thickness.In this rat aorta model, remodeling documented at histology was followed-up in vivo. The use of such clinical MRI scanners has potential to reduce animal numbers needed to follow-up the remodeling process after therapeutic intervention

    Nonequilibrium relaxation study of the anisotropic antiferromagnetic Heisenberg model on the triangular lattice

    Full text link
    Effect of exchange anisotropy on the relaxation time of spin and vector chirality is studied for the antiferromagnetic classical Heisenberg model on the triangular lattice by using the nonequilibrium relaxation Monte Carlo method. We identify the Berezinskii-Kosterlitz-Thouless (BKT) transition and the chiral transition in a wide range of the anisotropy, even for very small anisotropy of \sim 0.01%. As the anisotropy decreases, both the critical temperatures steeply decrease, while the BKT critical region becomes divergently wide. We elucidate a sharp "V shape" of the phase diagram around the isotropic Heisenberg point, which suggests that the isotropic case is exceptionally singular and the associated Z vortex transition will be isolated from the BKT and chiral transitions. We discuss the relevance of our results to peculiar behavior of the spin relaxation time observed experimentally in triangular antiferromagnets.Comment: 5 pages, 4 figures, accepted for publication in J. Phys. Soc. Jp
    corecore