36 research outputs found
The Role of FBXW7 in Gynecologic Malignancies
The F-Box and WD Repeat Domain Containing 7 (FBXW7) protein has been shown to regulate cellular growth and act as a tumor suppressor. This protein, also known as FBW7, hCDC4, SEL10 or hAGO, is encoded by the gene FBXW7. It is a crucial component of the Skp1-Cullin1-F-box (SCF) complex, which is a ubiquitin ligase. This complex aids in the degradation of many oncoproteins, such as cyclin E, c-JUN, c-MYC, NOTCH, and MCL1, via the ubiquitin-proteasome system (UPS). The FBXW7 gene is commonly mutated or deleted in numerous types of cancer, including gynecologic cancers (GCs). Such FBXW7 mutations are linked to a poor prognosis due to increased treatment resistance. Hence, detection of the FBXW7 mutation may possibly be an appropriate diagnostic and prognostic biomarker that plays a central role in determining suitable individualized management. Recent studies also suggest that, under specific circumstances, FBXW7 may act as an oncogene. There is mounting evidence indicating that the aberrant expression of FBXW7 is involved in the development of GCs. The aim of this review is to give an update on the role of FBXW7 as a potential biomarker and also as a therapeutic target for novel treatments, particularly in the management of GCs
A dual specificity kinase, DYRK1A, as a potential therapeutic target for head and neck squamous cell carcinoma
Despite advances in clinical management, 5-year survival rate in patients with late-stage head and neck squamous cell carcinoma (HNSCC) has not improved significantly over the past decade. Targeted therapies have emerged as one of the most promising approaches to treat several malignancies. Though tyrosine phosphorylation accounts for a minority of total phosphorylation, it is critical for activation of signaling pathways and plays a significant role in driving cancers. To identify activated tyrosine kinase signaling pathways in HNSCC, we compared the phosphotyrosine profiles of a panel of HNSCC cell lines to a normal oral keratinocyte cell line. Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) was one of the kinases hyperphosphorylated at Tyr-321 in all HNSCC cell lines. Inhibition of DYRK1A resulted in an increased apoptosis and decrease in invasion and colony formation ability of HNSCC cell lines. Further, administration of the small molecular inhibitor against DYRK1A in mice bearing HNSCC xenograft tumors induced regression of tumor growth. Immunohistochemical labeling of DYRK1A in primary tumor tissues using tissue microarrays revealed strong to moderate staining of DYRK1A in 97.5% (39/40) of HNSCC tissues analyzed. Taken together our results suggest that DYRK1A could be a novel therapeutic target in HNSCC
Identification of serum proteome signatures of locally advanced and metastatic gastric cancer: a pilot study
Proteomics analysis of duck lung tissues in response to highly pathogenic avian influenza virus
Systems medicine approaches for peptide array-based protein kinase profiling: progress and prospects
Introduction: Pharmacological manipulation of signalling pathways is becoming an increasingly important avenue for the rational clinical management of disease but is hampered by a lack of technologies that allow the generation of comprehensive descriptions of cellular signalling.Areas covered: Herein, the authors discuss the potential of peptide array-based kinome profiling for evaluating cellular signalling in the context of drug discovery.Expert commentary: Genomic and proteomic approaches have been of significant value to our elucidation of the molecular mechanisms that govern physiology. However, an equally, if not more important goal, is to define those proteins that participate in signalling pathways that ultimately control cell fate, especially kinases. Traditional genetic and biochemical approaches can certainly provide answers here, but for technical and practical reasons, are typically pursued one gene or pathway at a time. A more comprehensive approach is one in which peptide arrays of kinase-specific substrates are incubated with cell lysates and P-33-ATP generating comprehensive descriptions, or where arrays are interrogated with phosphospecific antibodies. Both approaches allow analysis of cellular signalling without a priori assumptions to possibly influenced pathways
Lncrna mort (Znf667-as1) in cancer—is there a possible role in gynecological malignancies?
Gynecological cancers (GCs) are currently among the major threats to female health. Moreover, there are different histologic subtypes of these cancers, which are defined as ‘rare’ due to an annual incidence of <6 per 100,000 women. The majority of these tend to be associated with a poor prognosis. Long non-coding RNAs (lncRNAs) play a critical role in the normal development of organisms as well as in tumorigenesis. LncRNAs can be classified into tumor suppressor genes or oncogenes, depending on their function within the cellular context and the signaling pathways in which they are involved. These regulatory RNAs are potential therapeutic targets for cancer due to their tissue and tumor specificity. However, there still needs to be a deeper understanding of the mechanisms by which lncRNAs are involved in the regulation of numerous biological functions in humans, both in normal health and disease. The lncRNA Mortal Obligate RNA Transcript (MORT; alias ZNF667-AS1) has been identified as a tumor-related lncRNA. ZNF667-AS1 gene, located in the human chromosome region 19q13.43, has been shown to be silenced by DNA hypermethylation in several cancers. In this review, we report on the biological functions of ZNF667-AS1 from recent studies and describe the regulatory functions of ZNF667-AS1 in human disease, including cancer. Furthermore, we discuss the emerging insights into the potential role of ZNF667-AS1 as a biomarker and novel therapeutic target in cancer, including GCs (ovarian, cervical, and endometrial cancers)
CusVarDB: A tool for building customized sample-specific variant protein database from next-generation sequencing datasets
Proteogenomic analysis of Candida glabrata using high resolution mass spectrometry.
Item does not contain fulltextCandida glabrata is a common opportunistic human pathogen leading to significant mortality in immunosuppressed and immunodeficient individuals. We carried out proteomic analysis of C. glabrata using high resolution Fourier transform mass spectrometry with MS resolution of 60,000 and MS/MS resolution of 7500. On the basis of 32,453 unique peptides identified from 118,815 peptide-spectrum matches, we validated 4421 of the 5283 predicted protein-coding genes (83%) in the C. glabrata genome. Further, searching the tandem mass spectra against a six frame translated genome database of C. glabrata resulted in identification of 11 novel protein coding genes and correction of gene boundaries for 14 predicted gene models. A subset of novel protein-coding genes and corrected gene models were validated at the transcript level by RT-PCR and sequencing. Our study illustrates how proteogenomic analysis enabled by high resolution mass spectrometry can enrich genome annotation and should be an integral part of ongoing genome sequencing and annotation efforts
