11,603 research outputs found
Sensitivity of 8B breakup cross section to projectile structure in CDCC calculations
Given the Astrophysical interest of BeB, there have been
several experiments applying the Coulomb dissociation method for extracting the
capture rate. Measurements at Michigan State are dominated by
contributions but have a small component. On the other hand, a lower
energy measurement at Notre Dame has a much stronger contribution. The
expectation was that the two measurements would tie down the and thus
allow for an accurate extraction of the relevant for the capture process.
The aim of this brief report is to show that the factor in breakup
reactions does not translate into a scaling of the contribution in the
corresponding capture reaction. We show that changes to the B single
particle parameters, which are directly related to the component in the
capture reaction, do not effect the corresponding breakup reactions, using the
present reaction theory.Comment: 4 pages, 6 figures, revtex
Local Operations and Completely Positive Maps in Algebraic Quantum Field Theory
Einstein introduced the locality principle which states that all physical
effect in some finite space-time region does not influence its space-like
separated finite region. Recently, in algebraic quantum field theory, R\'{e}dei
captured the idea of the locality principle by the notion of operational
separability. The operation in operational separability is performed in some
finite space-time region, and leaves unchanged the state in its space-like
separated finite space-time region. This operation is defined with a completely
positive map. In the present paper, we justify using a completely positive map
as a local operation in algebraic quantum field theory, and show that this
local operation can be approximately written with Kraus operators under the
funnel property
A Fluid Model for the Interaction of the Solar Wind and the Geomagnetic Field
Solar wind and geomagnetic field interaction in terms of continuum theory of fluid flo
Nonlocal hydrodynamic influence on the dynamic contact angle: Slip models versus experiment
Experiments reported by Blake et al. [Phys. Fluids. 11, 1995 (1999)] suggest that the dynamic contact angle formed between the free surface of a liquid and a moving solid boundary at a fixed contact-line speed depends on the flow field/geometry near the moving contact line. The present paper examines quantitatively whether or not it is possible to attribute this effect to bending of the free surface due to hydrodynamic stresses acting upon it and hence interpret the results in terms of the so-called ``apparent'' contact angle. It is shown that this is not the case. Numerical analysis of the problem demonstrates that, at the spatial
resolution reported in the experiments, the variations of the ``apparent'' contact angle (defined in two different ways) caused by variations in the flow field, at a fixed contact-line speed, are too small to account for the observed effect. The results clearly indicate that the actual (macroscopic) dynamic contact angle, i.e.\ the one used in fluid mechanics as a boundary condition for the equation determining the free surface shape, must be regarded as dependent not only on the contact-line speed but also on the flow field/geometry in the vicinity of the moving contact line
PD-L1 testing for lung cancer in the UK: recognizing the challenges for implementation.
A new approach to the management of non-small-cell lung cancer (NSCLC) has recently emerged that works by manipulating the immune checkpoint controlled by programmed death receptor 1 (PD-1) and its ligand programmed death ligand 1 (PD-L1). Several drugs targeting PD-1 (pembrolizumab and nivolumab) or PD-L1 (atezolizumab, durvalumab, and avelumab) have been approved or are in the late stages of development. Inevitably, the introduction of these drugs will put pressure on healthcare systems, and there is a need to stratify patients to identify those who are most likely to benefit from such treatment. There is evidence that responsiveness to PD-1 inhibitors may be predicted by expression of PD-L1 on neoplastic cells. Hence, there is considerable interest in using PD-L1 immunohistochemical staining to guide the use of PD-1-targeted treatments in patients with NSCLC. This article reviews the current knowledge about PD-L1 testing, and identifies current research requirements. Key factors to consider include the source and timing of sample collection, pre-analytical steps (sample tracking, fixation, tissue processing, sectioning, and tissue prioritization), analytical decisions (choice of biomarker assay/kit and automated staining platform, with verification of standardized assays or validation of laboratory-devised techniques, internal and external quality assurance, and audit), and reporting and interpretation of the results. This review addresses the need for integration of PD-L1 immunohistochemistry with other tests as part of locally agreed pathways and protocols. There remain areas of uncertainty, and guidance should be updated regularly as new information becomes available
The structure of Io's thermal corona and implications for atmospheric escape
We investigate the escape of species from Io's atmosphere using a steady-state model of Io's exospheric
corona and its interaction with the Io plasma torus. The corona is assumed to be spherically symmetric with
the radial density and compositional structure determined by the gas kinetic temperature, critical level radius,
and mixing ratios of the component species. Thermal and nonthermal escape rates are calculated and the
results compared with previously estimated torus and neutral cloud supply rates for O, S, Na, and K. Both
oxygen- and sulfur-dominated exospheres are considered. Atmospheric sputtering is found to be the major
escape mechanism for models in which the plasma flow reaches the critical level. However, such models
produce total mass-loading rates an order of magnitude larger than inferred values suggesting that either (1)
the structure of the thermal corona is significantly modified by the nonthermal interaction, or (2) substantial
plasma flow modification and deflection occurs in the corona at or above the critical level. Assuming that the
thermal model is a correct description of the corona, a comparison of these results with the observed near-Io
distribution of neutral Na and estimated source rates for the neutral Na "jets" suggests an extended Na
coronal component. Assuming that this component is part of the thermal exosphere, we find that the observations
are consistent with an O-dominated corona, an exospheric temperature ~1000 K, a 0.001 critical level
mixing ratio of Na, and a critical level radius ~1.5 R_(Io)
Muon Colliders
Muon Colliders have unique technical and physics advantages and disadvantages
when compared with both hadron and electron machines. They should thus be
regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high
luminosity \mumu colliders, and of a 0.5 TeV lower luminosity demonstration
machine. We discuss the various systems in such muon colliders, starting from
the proton accelerator needed to generate the muons and proceeding through muon
cooling, acceleration and storage in a collider ring. Problems of detector
background are also discussed.Comment: 28 pages, with 12 postscript figures. To be published Proceedings of
the 9th Advanced ICFA Beam Dynamics Workshop, AIP Pres
- …
