27 research outputs found

    Climate Vulnerability, Water Vulnerability

    Full text link

    Elevational plant species richness patterns and their drivers across non-endemics, endemics and growth forms in the Eastern Himalaya

    No full text
    Despite decades of research, ecologists continue to debate how spatial patterns of species richness arise across elevational gradients on the Earth. The equivocal results of these studies could emanate from variations in study design, sampling effort and data analysis. In this study, we demonstrate that the richness patterns of 2,781 (2,197 non-endemic and 584 endemic) angiosperm species along an elevational gradient of 300-5,300 m in the Eastern Himalaya are hump-shaped, spatial scale of extent (the proportion of elevational gradient studied) dependent and growth form specific. Endemics peaked at higher elevations than non-endemics across all growth forms (trees, shrubs, climbers, and herbs). Richness patterns were influenced by the proportional representation of the largest physiognomic group (herbs). We show that with increasing spatial scale of extent, the richness patterns change from a monotonic to a hump-shaped pattern and richness maxima shift toward higher elevations across all growth forms. Our investigations revealed that the combination of ambient energy (air temperature, solar radiation, and potential evapo-transpiration) and water availability (soil water content and precipitation) were the main drivers of elevational plant species richness patterns in the Himalaya. This study highlights the importance of factoring in endemism, growth forms, and spatial scale when investigating elevational gradients of plant species distributions and advances our understanding of how macroecological patterns arise.Kumar Manish, Maharaj K. Pandit, Yasmeen Telwala, Dinesh C. Nautiyal, Lian Pin Koh, Sudha Tiwar

    Distribution pattern of vascular plant species of mountains in Nepal and their fate against global warming

    No full text
    This study aims to find the altitudinal distribution pattern of vascular plant species reported from high mountain of Nepal (Manang) along the whole Himalayan elevation gradient, and evaluate their fate against climate change. Data was gathered from multiple sources, field investigations, literatures, and herbarium specimens. Altogether, 303 vascular plant species were reported from Manang. We used a published data to calculate distribution range of each species by interpolating between its upper and lower elevation limits. The relationship between elevation and species richness is elucidated by generalized linear model. The consequence of global warming upon Manang’s vascular plant species was estimated based on projected temperature change for next century and adiabatic lapse rate along the elevation gradient of the Himalayas. The vascular plant species richness has a unimodel relationship with elevation along the whole elevation gradient of Nepal as well as in three biogeographical regions of Nepal. Vascular plants of Manang are found distributed from low land Terai to high alpine regions of Nepal and their elevation distribution range varies from 200 to 4700 m. Out of 303 vascular plants of Manang, only seven species might be affected if temperature increase by 1.5°C, whereas at least 70 species will be affected with Received: 3 March 2015 Accepted: 17 July 2015 5°C temperature increased. However, the majority of species (233 species) have wider distribution range (greater than 1000 m) and more than 5°C temperature tolerance range, thus they are likely to be less affected from global warming by the end of 21st century
    corecore