282 research outputs found
Another look at anomalous J/Psi suppression in Pb+Pb collisions at P/A = 158 GeV/c
A new data presentation is proposed to consider anomalous
suppression in Pb + Pb collisions at GeV/c. If the inclusive
differential cross section with respect to a centrality variable is available,
one can plot the yield of J/Psi events per Pb-Pb collision as a function of an
estimated squared impact parameter. Both quantities are raw experimental data
and have a clear physical meaning. As compared to the usual J/Psi over
Drell-Yan ratio, there is a huge gain in statistical accuracy. This
presentation could be applied advantageously to many processes in the field of
nucleus-nucleus collisions at various energies.Comment: 6 pages, 5 figures, submitted to The European Physical Journal C;
minor revisions for final versio
Effect of Changing the Vocal Tract Shape on the Sound Production of the Recorder: An Experimental and Theoretical Study
Changing the vocal tract shape is one of the techniques which can be used by
the players of wind instruments to modify the quality of the sound. It has been
intensely studied in the case of reed instruments but has received only little
attention in the case of air-jet instruments. This paper presents a first study
focused on changes in the vocal tract shape in recorder playing techniques.
Measurements carried out with recorder players allow to identify techniques
involving changes of the mouth shape as well as consequences on the sound. A
second experiment performed in laboratory mimics the coupling with the vocal
tract on an artificial mouth. The phase of the transfer function between the
instrument and the mouth of the player is identified to be the relevant
parameter of the coupling. It is shown to have consequences on the spectral
content in terms of energy distribution among the even and odd harmonics, as
well as on the stability of the first two oscillating regimes. The results
gathered from the two experiments allow to develop a simplified model of sound
production including the effect of changing the vocal tract shape. It is based
on the modification of the jet instabilities due to the pulsating emerging jet.
Two kinds of instabilities, symmetric and anti-symmetric, with respect to the
stream axis, are controlled by the coupling with the vocal tract and the
acoustic oscillation within the pipe, respectively. The symmetry properties of
the flow are mapped on the temporal formulation of the source term, predicting
a change in the even / odd harmonics energy distribution. The predictions are
in qualitative agreement with the experimental observations
Planets Around Low-Mass Stars (PALMS). I. A Substellar Companion to the Young M Dwarf 1RXS J235133.3+312720
We report the discovery of a brown dwarf companion to the young M dwarf 1RXS
J235133.3+312720 as part of a high contrast imaging search for planets around
nearby young low-mass stars with Keck-II/NIRC2 and Subaru/HiCIAO. The 2.4"
(~120 AU) pair is confirmed to be comoving from two epochs of high resolution
imaging. Follow-up low- and moderate-resolution near-infrared spectroscopy of
1RXS J2351+3127 B with IRTF/SpeX and Keck-II/OSIRIS reveals a spectral type of
L0. The M2 primary star 1RXS J2351+3127 A exhibits X-ray and UV
activity levels comparable to young moving group members with ages of ~10-100
Myr. UVW kinematics based the measured radial velocity of the primary and the
system's photometric distance (50 +/- 10 pc) indicate it is likely a member of
the ~50-150 Myr AB Dor moving group. The near-infrared spectrum of 1RXS
J2351+3127 B does not exhibit obvious signs of youth, but its H-band morphology
shows subtle hints of intermediate surface gravity. The spectrum is also an
excellent match to the ~200 Myr M9 brown dwarf LP 944-20. Assuming an age of
50-150 Myr, evolutionary models imply a mass of 32 +/- 6 Mjup for the
companion, making 1RXS J2351+3127 B the second lowest-mass member of the AB Dor
moving group after the L4 companion CD-35 2722 B and one of the few benchmark
brown dwarfs known at young ages.Comment: Accepted for publication in ApJ. 24 pages, 12 figures, 4 table
Planet Populations as a Function of Stellar Properties
Exoplanets around different types of stars provide a window into the diverse
environments in which planets form. This chapter describes the observed
relations between exoplanet populations and stellar properties and how they
connect to planet formation in protoplanetary disks. Giant planets occur more
frequently around more metal-rich and more massive stars. These findings
support the core accretion theory of planet formation, in which the cores of
giant planets form more rapidly in more metal-rich and more massive
protoplanetary disks. Smaller planets, those with sizes roughly between Earth
and Neptune, exhibit different scaling relations with stellar properties. These
planets are found around stars with a wide range of metallicities and occur
more frequently around lower mass stars. This indicates that planet formation
takes place in a wide range of environments, yet it is not clear why planets
form more efficiently around low mass stars. Going forward, exoplanet surveys
targeting M dwarfs will characterize the exoplanet population around the lowest
mass stars. In combination with ongoing stellar characterization, this will
help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet
Measurements of the -Dependence of the Proton and Neutron Spin Structure Functions g1p and g1n
The structure functions g1p and g1n have been measured over the range 0.014 <
x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV
longitudinally polarized electrons from polarized protons and deuterons. We
find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of
the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all
available data we find at
Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm
0.005.Comment: 17 pages, 3 figures. Submitted to Physics Letters
Spallation Neutron Production by 0.8, 1.2 and 1.6 GeV Protons on various Targets
Spallation neutron production in proton induced reactions on Al, Fe, Zr, W,
Pb and Th targets at 1.2 GeV and on Fe and Pb at 0.8, and 1.6 GeV measured at
the SATURNE accelerator in Saclay is reported. The experimental
double-differential cross-sections are compared with calculations performed
with different intra-nuclear cascade models implemented in high energy
transport codes. The broad angular coverage also allowed the determination of
average neutron multiplicities above 2 MeV. Deficiencies in some of the models
commonly used for applications are pointed out.Comment: 20 pages, 32 figures, revised version, accepted fpr publication in
Phys. Rev.
Precision Determination of the Neutron Spin Structure Function g1n
We report on a precision measurement of the neutron spin structure function
using deep inelastic scattering of polarized electrons by polarized
^3He. For the kinematic range 0.014<x<0.7 and 1 (GeV/c)^2< Q^2< 17 (GeV/c)^2,
we obtain at an average . We find relatively large negative
values for at low . The results call into question the usual Regge
theory method for extrapolating to x=0 to find the full neutron integral
, needed for testing quark-parton model and QCD sum rules.Comment: 5 pages, 3 figures To be published in Phys. Rev. Let
Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2
We have measured the spin structure functions g2p and g2d and the virtual
photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0
< Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons
from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is
significantly smaller than the sqrt{R} positivity limit over the measured
range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We
obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The
Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range
0.02 < x < 0.8.Comment: 12 pages, 4 figures, 1 tabl
Chemical Abundances of M-Dwarfs from the Apogee Survey. I. The Exoplanet Hosting Stars Kepler-138 and Kepler-186
We report the first detailed chemical abundance analysis of the exoplanet-hosting M-dwarf stars Kepler-138 and Kepler-186 from the analysis of high-resolution (R ∼ 22,500) H-band spectra from the SDSS-IV–APOGEE survey. Chemical abundances of 13 elements—C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe—are extracted from the APOGEE spectra of these early M-dwarfs via spectrum syntheses computed with an improved line list that takes into account H2O and FeH lines. This paper demonstrates that APOGEE spectra can be analyzed to determine detailed chemical compositions of M-dwarfs. Both exoplanet-hosting M-dwarfs display modest subsolar metallicities: [Fe/H]Kepler-138 = −0.09 ± 0.09 dex and [Fe/H]Kepler-186 = −0.08 ± 0.10 dex. The measured metallicities resulting from this high-resolution analysis are found to be higher by ∼0.1–0.2 dex than previous estimates from lower-resolution spectra. The C/O ratios obtained for the two planet-hosting stars are near-solar, with values of 0.55 ± 0.10 for Kepler-138 and 0.52 ± 0.12 for Kepler-186. Kepler-186 exhibits a marginally enhanced [Si/Fe] ratio
Measurement of the Proton and Deuteron Spin Structure Function g_1 in the Resonance Region
We have measured the proton and deuteron spin structure functions g_1^p and
g_1^d in the region of the nucleon resonances for W^2 < 5 GeV^2 and and GeV^2 by inelastically scattering 9.7 GeV polarized
electrons off polarized and targets. We observe
significant structure in g_1^p in the resonance region. We have used the
present results, together with the deep-inelastic data at higher W^2, to
extract . This is the first
information on the low-Q^2 evolution of Gamma toward the Gerasimov-Drell-Hearn
limit at Q^2 = 0.Comment: 7 pages, 2 figure
- …
