1,616 research outputs found
A multi-color fast-switching microfluidic droplet dye laser
We describe a multi-color microfluidic dye laser operating in whispering gallery mode based on a train of alternating droplets containing solutions of different dyes; this laser is capable of switching the wavelength of its emission between 580 nm and 680 nm at frequencies up to 3.6 kHz -— the fastest among all dye lasers reported; it has potential applications in on-chip spectroscopy and flow cytometry
Cross-link governed dynamics of biopolymer networks
Cytoskeletal networks of biopolymers are cross-linked by a variety of
proteins. Experiments have shown that dynamic cross-linking with physiological
linker proteins leads to complex stress relaxation and enables network flow at
long times. We present a model for the mechanical properties of transient
networks. By a combination of simulations and analytical techniques we show
that a single microscopic timescale for cross-linker unbinding leads to a broad
spectrum of macroscopic relaxation times, resulting in a weak power-law
dependence of the shear modulus on frequency. By performing rheological
experiments, we demonstrate that our model quantitatively describes the
frequency behavior of actin network cross-linked with -Actinin- over
four decades in frequency.Comment: 4 page
Arbitrary rotation and entanglement of flux SQUID qubits
We propose a new approach for the arbitrary rotation of a three-level SQUID
qubit and describe a new strategy for the creation of coherence transfer and
entangled states between two three-level SQUID qubits. The former is succeeded
by exploring the coupled-uncoupled states of the system when irradiated with
two microwave pulses, and the latter is succeeded by placing the SQUID qubits
into a microwave cavity and used adiabatic passage methods for their
manipulation.Comment: Accepted for publication in Phys. Rev.
Valley splitting of Si/SiGe heterostructures in tilted magnetic fields
We have investigated the valley splitting of two-dimensional electrons in
high quality Si/SiGe heterostructures under tilted magnetic fields.
For all the samples in our study, the valley splitting at filling factor
() is significantly different before and after the
coincidence angle, at which energy levels cross at the Fermi level. On both
sides of the coincidence, a linear density dependence of on the
electron density was observed, while the slope of these two configurations
differs by more than a factor of two. We argue that screening of the Coulomb
interaction from the low-lying filled levels, which also explains the observed
spin-dependent resistivity, is responsible for the large difference of
before and after the coincidence.Comment: REVTEX 4 pages, 4 figure
Valley Splitting Theory of SiGe/Si/SiGe Quantum Wells
We present an effective mass theory for SiGe/Si/SiGe quantum wells, with an
emphasis on calculating the valley splitting. The theory introduces a valley
coupling parameter, , which encapsulates the physics of the quantum well
interface. The new effective mass parameter is computed by means of a tight
binding theory. The resulting formalism provides rather simple analytical
results for several geometries of interest, including a finite square well, a
quantum well in an electric field, and a modulation doped two-dimensional
electron gas. Of particular importance is the problem of a quantum well in a
magnetic field, grown on a miscut substrate. The latter may pose a numerical
challenge for atomistic techniques like tight-binding, because of its
two-dimensional nature. In the effective mass theory, however, the results are
straightforward and analytical. We compare our effective mass results with
those of the tight binding theory, obtaining excellent agreement.Comment: 13 pages, 7 figures. Version submitted to PR
Production of Sodium Bose--Einstein condensates in an optical dimple trap
We report on the realization of a sodium Bose--Einstein condensate (BEC) in a
combined red-detuned optical dipole trap, formed by two beams crossing in a
horizontal plane and a third, tightly focused dimple trap propagating
vertically. We produce a BEC in three main steps: loading of the crossed dipole
trap from laser-cooled atoms, an intermediate evaporative cooling stage which
results in efficient loading of the auxiliary dimple trap, and a final
evaporative cooling stage in the dimple trap. Our protocol is implemented in a
compact setup and allows us to reach quantum degeneracy even with relatively
modest initial atom numbers and available laser power
Recalibrating the White Cube as a hub for social action
A new form of practice is developing in which cultural organisations are transformed from white cubes to hubs for social action and learning. Focus extends from the showing of art to its creation, and the empowerment and agency of communities through enactive learning. In this model the arts organisation acts as a catalyst for collaborative action and enquiry involving academia and a wider ecosystem of communities and stakeholders including the public, artists, digital creative industry, maker spaces and local government. The new model entails embedding of research, innovation and arts practice within the arts organisation itself. We illustrate the approach with examples of projects spanning mental health, physical disability, young people, veterans, children and parents, which have had a real impact on health and well-being of our communities
Transport Spectroscopy of Symmetry-Broken Insulating States in Bilayer Graphene
The flat bands in bilayer graphene(BLG) are sensitive to electric fields
E\bot directed between the layers, and magnify the electron-electron
interaction effects, thus making BLG an attractive platform for new
two-dimensional (2D) electron physics[1-5]. Theories[6-16] have suggested the
possibility of a variety of interesting broken symmetry states, some
characterized by spontaneous mass gaps, when the electron-density is at the
carrier neutrality point (CNP). The theoretically proposed gaps[6,7,10] in
bilayer graphene are analogous[17,18] to the masses generated by broken
symmetries in particle physics and give rise to large momentum-space Berry
curvatures[8,19] accompanied by spontaneous quantum Hall effects[7-9]. Though
recent experiments[20-23] have provided convincing evidence of strong
electronic correlations near the CNP in BLG, the presence of gaps is difficult
to establish because of the lack of direct spectroscopic measurements. Here we
present transport measurements in ultra-clean double-gated BLG, using
source-drain bias as a spectroscopic tool to resolve a gap of ~2 meV at the
CNP. The gap can be closed by an electric field E\bot \sim13 mV/nm but
increases monotonically with a magnetic field B, with an apparent particle-hole
asymmetry above the gap, thus providing the first mapping of the ground states
in BLG.Comment: 4 figure
Gelation as arrested phase separation in short-ranged attractive colloid-polymer mixtures
We present further evidence that gelation is an arrested phase separation in
attractive colloid-polymer mixtures, based on a method combining confocal
microscopy experiments with numerical simulations recently established in {\bf
Nature 453, 499 (2008)}. Our results are independent of the form of the
interparticle attractive potential, and therefore should apply broadly to any
attractive particle system with short-ranged, isotropic attractions. We also
give additional characterization of the gel states in terms of their structure,
inhomogeneous character and local density.Comment: 6 figures, to be published in J. Phys. Condens. Matter, special issue
for EPS Liquids Conference 200
Microscopic Polarization in Bilayer Graphene
Bilayer graphene has drawn significant attention due to the opening of a band
gap in its low energy electronic spectrum, which offers a promising route to
electronic applications. The gap can be either tunable through an external
electric field or spontaneously formed through an interaction-induced symmetry
breaking. Our scanning tunneling measurements reveal the microscopic nature of
the bilayer gap to be very different from what is observed in previous
macroscopic measurements or expected from current theoretical models. The
potential difference between the layers, which is proportional to charge
imbalance and determines the gap value, shows strong dependence on the disorder
potential, varying spatially in both magnitude and sign on a microscopic level.
Furthermore, the gap does not vanish at small charge densities. Additional
interaction-induced effects are observed in a magnetic field with the opening
of a subgap when the zero orbital Landau level is placed at the Fermi energy
- …
