10,092 research outputs found
Phase reduction of stochastic limit cycle oscillators
We point out that the phase reduction of stochastic limit cycle oscillators
has been done incorrectly in the literature. We present a correct phase
reduction method for oscillators driven by weak external white Gaussian noises.
Numerical evidence demonstrates that the present phase equation properly
approximates the dynamics of the original full oscillator system.Comment: 4 pages, 2 figure
Observation of Plasma Hole in an ECR Ar Plasma
The first experimental observation of a plasma hole structure in an ECR argon plasma is reported. The plasma hole is a cylindrical density cavity, which is formed spontaneously in the center of the plasma. The steep density gradient between the hole plasma and the ambient plasma is sustained by a thin interfacial layer, the width of which is a few ion Larmor radii. Supersonic rotation is found over the large cross-sectional area of Ar plasma hole. The axial flow can also exceed ion sound speed. Spectral measurements revealed that the neutral density profile exhibits a hole structure as well as that in ion density, the diameter of which is much shorter than the mean free path of neutral particles
Orbital Properties of Sr3Ru2O7 and Related Ruthenates Probed by 17O-NMR
We report a site-separated O-NMR study of the layered perovskite
ruthenate SrRuO, which exhibits nearly two-dimensional transport
properties and itinerant metamagnetism at low temperatures. The local hole
occupancies and the spin densities in the oxygen orbitals are obtained by
means of tight-binding analyses of electric field gradients and anisotropic
Knight shifts. These quantities are compared with two other layered perovskite
ruthenates: the two-dimensional paramagnet SrRuO and the
three-dimensional ferromagnet SrRuO. The hole occupancies at the oxygen
sites are very large, about one hole per ruthenium atom. This is due to the
strong covalent character of the Ru-O bonding in this compound. The magnitude
of the hole occupancy might be related to the rotation or tilt of the RuO
octahedra. The spin densities at the oxygen sites are also large, 20-40% of the
bulk susceptibilities, but in contrast to the hole occupancies, the spin
densities strongly depend on the dimensionality. This result suggests that the
density-of-states at the oxygen sites plays an essential role for the
understanding of the complex magnetism found in the layered perovskite
ruthenates.Comment: 9 pages, 5 figures, to be published in Phys. Rev.
Development of a Large-Area Aerogel Cherenkov Counter Onboard BESS
This paper describes the development of a threshold type aerogel Cherenkov
counter with a large sensitive area of 0.6 m to be carried onboard the BESS
rigidity spectrometer to detect cosmic-ray antiprotons. The design incorporates
a large diffusion box containing 46 finemesh photomultipliers, with special
attention being paid to achieving good performance under a magnetic field and
providing sufficient endurance while minimizing material usage. The refractive
index of the aerogel was chosen to be 1.03. By utilizing the muons and protons
accumulated during the cosmic-ray measurements at sea level, a rejection factor
of 10 was obtained against muons with , while keeping 97%
efficiency for protons below the threshold.Comment: 13 pages, LaTex, 9 eps figures included, submitted to NIM
Dynamics of Limit Cycle Oscillator Subject to General Noise
The phase description is a powerful tool for analyzing noisy limit cycle
oscillators. The method, however, has found only limited applications so far,
because the present theory is applicable only to the Gaussian noise while noise
in the real world often has non-Gaussian statistics. Here, we provide the phase
reduction for limit cycle oscillators subject to general, colored and
non-Gaussian, noise including heavy-tailed noise. We derive quantifiers like
mean frequency, diffusion constant, and the Lyapunov exponent to confirm
consistency of the result. Applying our results, we additionally study a
resonance between the phase and noise.Comment: main paper: 4 pages, 2 figure; auxiliary material: 5-7 pages of the
document, 1 figur
Weak Magnetic Order in the Bilayered-hydrate NaCoOHO Structure Probed by Co Nuclear Quadrupole Resonance - Proposed Phase Diagram in Superconducting NaCoO HO
A weak magnetic order was found in a non-superconducting bilayered-hydrate
NaCoOHO sample by a Co Nuclear Quadrupole Resonance
(NQR) measurement. The nuclear spin-lattice relaxation rate divided by
temperature shows a prominent peak at 5.5 K, below which a Co-NQR peak
splits due to an internal field at the Co site. From analyses of the Co NQR
spectrum at 1.5 K, the internal field is evaluated to be 300 Oe and is
in the -plane. The magnitude of the internal field suggests that the
ordered moment is as small as using the hyperfine coupling
constant reported previously. It is shown that the NQR frequency
correlates with magnetic fluctuations from measurements of NQR spectra and
in various samples. The higher- sample has the stronger
magnetic fluctuations. A possible phase diagram in NaCoOHO is depicted using and , in which the crystal distortion
along the c-axis of the tilted CoO octahedron is considered to be a
physical parameter. Superconductivity with the highest is seemingly
observed in the vicinity of the magnetic phase, suggesting strongly that the
magnetic fluctuations play an important role for the occurrence of the
superconductivity.Comment: 5 pages, 6 figures, submitted to J. Phys. Soc. Jp
- …
