199,820 research outputs found

    PTPT Symmetric Real Dirac Fermions and Semimetals

    Get PDF
    Recently Weyl fermions have attracted increasing interest in condensed matter physics due to their rich phenomenology originated from their nontrivial monopole charges. Here we present a theory of real Dirac points that can be understood as real monopoles in momentum space, serving as a real generalization of Weyl fermions with the reality being endowed by the PTPT symmetry. The real counterparts of topological features of Weyl semimetals, such as Nielsen-Ninomiya no-go theorem, 22D sub topological insulators and Fermi arcs, are studied in the PTPT symmetric Dirac semimetals, and the underlying reality-dependent topological structures are discussed. In particular, we construct a minimal model of the real Dirac semimetals based on recently proposed cold atom experiments and quantum materials about PTPT symmetric Dirac nodal line semimetals.Comment: 7.5 pages, 5 figures. Accepted by Phys. Rev. Let

    The mass estimate in narrow-line Seyfert 1 galaxies

    Full text link
    It is possible that narrow-line Seyfert 1 galaxies (NLS1s) are in the early stage of active galactic nuclei (AGNs) evolution. It is important to estimate the mass of supermassive black hole (SBH) in NLS1s. Here we considered the different kinds of methods to estimate the SBH masses in NLS1s. The virial mass from the Hβ\beta linewidth assuming random orbits of broad line regions (BLRs) is consistent with that from the statured soft X-ray luminosity, which showed that most of NLS1s are in the super-Eddington accretion state. The mass from the [O III] linewidth is systematically larger than that from above two methods. It is necessary to measure he bulge stellar dispersion and/or bulge luminosity in NLS1s.Comment: 2 Pages, 1 figure, in Prof. IAU Symposium No. 222, "The interplay among Black Holes, Stars and ISM in Galactic Nuclei ", eds. T. Storchi-Bergmann, Luis Ho and H. R. Schmit

    Using porous metals to enhance heat transfer in phase change materials (PCMs)

    Get PDF
    Heat transfer enhancement mechanism of Phase Change Materials (PCMs) by high-porosity metal foams was investigated in this study. The Darcy-Brinkman-Forchheimer modified flow model was employed in the numerical simulations to consider the non-Darcy effects in metal foams: viscous flow resistance and inertia flow resistance. Local Non-Thermal Equilibrium (LNTE) model was used to consider the temperature difference between PCM and metal foam. The results showed that in the solid and two-phase zone the heat transfer rate in PCMs was significantly increased by metal foams, whilst in the liquid zone, natural convection was found to be weakened by the large flow resistance of metal foams, despite which the overall heat transfer rate was still higher than the case where metal foams were not used. Metal foams of low porosity and high pore density were found to perform better than the ones of high porosity and low pore density
    corecore