165,644 research outputs found
A 0.18μm CMOS 9mW current-mode FLF linear phase filter with gain boost
“This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”The design and implementation of a CMOS continuous-time follow-the-leader-feedback (FLF) filter is described. The filter is implemented using a fully-differential linear, low voltage and low power consumption operational transconductance amplifier (OTA) based on a source degeneration topology. PSpice simulations using a standard TSMC 0.18 mum CMOS process with 2 V power supply have shown that the cut-off frequency of the filter ranges from 55 MHz to 160 MHz and dynamic range is about 45 dB. The group delay is less than 5% over the whole tuning range; the power consumption is only 9 mW
Crystals for high-energy calorimetry in extreme environments
Crystals are used as a homogeneous calorimetric medium in many high-energy
physics experiments. For some experiments, performance has to be ensured in
very difficult operating conditions, like a high radiation environment, very
large particle fluxes, high collision rates, placing constraints on response
and readout time. An overview is presented of recent achievements in the field,
with particular attention given to the performance of Lead Tungstate (PWO)
crystals exposed to high particle fluxes.Comment: To be published in Proc. of the Meeting of the Division of Particles
and Fields of the American Physical Society, DPF2004 (Riverside, USA, August
26th to 31st, 2004
Direct torque control of brushless DC drives with reduced torque ripple
The application of direct torque control (DTC) to brushless ac drives has been investigated extensively. This paper describes its application to brushless dc drives, and highlights the essential differences in its implementation, as regards torque estimation and the representation of the inverter voltage space vectors. Simulated and experimental results are presented, and it is shown that, compared with conventional current control, DTC results in reduced torque ripple and a faster dynamic response
Recommended from our members
Air-Coupled Surface Wave Transmission Measurement Across A Partially Closed Surface-Breaking Crack In Concrete
Previous researchers have demonstrated that the transmission of surface waves is effective to estimate the depth of a surface-breaking crack in solids. However, most of the results were obtained using a well-defined crack (or notch) in laboratory. In fact, there is a critical gap to apply the theory to surface-breaking cracks in concrete structures subjected to external loadings where the cracks are generally ill-defined, and partially closed. In this study, the authors investigated transmission coefficients of surface waves across a partially closed surface-breaking crack in concrete subjected to monotonically increasing compressive loadings. First, a concrete beam (0.5 X 0.154 X 2.1 m(3)) having two surface-breaking cracks with various crack widths was prepared in laboratory. Second, transmission coefficients of impact-induced surface waves were measured across a surface-breaking crack in the concrete beam with increasing compressive loadings from 0 to 140kN (10% of the ultimate compressive strength of the concrete beam). External post-tensioning was used to apply the compression. For comparison purpose, sensitivity of surface wave velocity to compressive loading was also investigated. As a result, observations in this study reveal that transmission coefficient is a more sensitive acoustic parameter than phase velocity to evaluate a surface-breaking cracking in concrete subjected to compressive loadings.Civil, Architectural, and Environmental Engineerin
Single inclusive hadron production in pA collisions at NLO
We study single inclusive forward hadron production in high energy
proton-nucleus collisions at next-to-leading order in the Color Glass
Condensate framework. Recent studies have shown that the next-to-leading order
corrections to this process are large and negative at large transverse
momentum, leading to negative cross sections. We propose to overcome this
difficulty by introducing an explicit rapidity factorization scale when
subtracting the rapidity divergence into the evolution of the target.Comment: 6 pages, 2 figures. Proceedings of DIS 2016, 11-15 April 2016, DESY
Hamburg, German
Electroencephalogram evidence for the activation of human mirror neuron system during the observation of intransitive shadow and line drawing actions
This article is available open access from the NCBI website at the link below. Copyright 2013 © Neural Regeneration Research. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Previous studies have demonstrated that hand shadows may activate the motor cortex associated with the mirror neuron system in human brain. However, there is no evidence of activity of the human mirror neuron system during the observation of intransitive movements by shadows and line drawings of hands. This study examined the suppression of electroencephalography mu waves (8–13 Hz) induced by observation of stimuli in 18 healthy students. Three stimuli were used: real hand actions, hand shadow actions and actions made by line drawings of hands. The results showed significant desynchronization of the mu rhythm (“mu suppression”) across the sensorimotor cortex (recorded at C3, Cz and C4), the frontal cortex (recorded at F3, Fz and F4) and the central and right posterior parietal cortex (recorded at Pz and P4) under all three conditions. Our experimental findings suggest that the observation of “impoverished hand actions”, such as intransitive movements of shadows and line drawings of hands, is able to activate widespread cortical areas related to the putative human mirror neuron system.The National Natural Science Foundation of China and the Research Fund for the Doctoral Program of Higher Education of China
NAM: Non-Adversarial Unsupervised Domain Mapping
Several methods were recently proposed for the task of translating images
between domains without prior knowledge in the form of correspondences. The
existing methods apply adversarial learning to ensure that the distribution of
the mapped source domain is indistinguishable from the target domain, which
suffers from known stability issues. In addition, most methods rely heavily on
`cycle' relationships between the domains, which enforce a one-to-one mapping.
In this work, we introduce an alternative method: Non-Adversarial Mapping
(NAM), which separates the task of target domain generative modeling from the
cross-domain mapping task. NAM relies on a pre-trained generative model of the
target domain, and aligns each source image with an image synthesized from the
target domain, while jointly optimizing the domain mapping function. It has
several key advantages: higher quality and resolution image translations,
simpler and more stable training and reusable target models. Extensive
experiments are presented validating the advantages of our method.Comment: ECCV 201
- …
