283,759 research outputs found

    A Rate-Splitting Based Bound-Approaching Transmission Scheme for the Two-User Symmetric Gaussian Interference Channel with Common Messages

    Get PDF
    This paper is concerned with a rate-splitting based transmission strategy for the two-user symmetric Gaussian interference channel that contains common messages only. Each transmitter encodes its common message into multiple layers by multiple codebooks that drawn from one separate code book, and transmits the superposition of the messages corresponding to these layers; each receiver decodes the messages from all layers of the two users successively. Two schemes are proposed for decoding order and optimal power allocation among layers respectively. With the proposed decoding order scheme, the sum-rate can be increased by rate-splitting, especially at the optimal number of rate-splitting, using average power allocation in moderate and weak interference regime. With the two proposed schemes at the receiver and the transmitter respectively, the sum-rate achieves the inner bound of HK without time-sharing. Numerical results show that the proposed optimal power allocation scheme with the proposed decoding order can achieve significant improvement of the performance over equal power allocation, and achieve the sum-rate within two bits per channel use (bits/channel use) of the sum capacity

    Comparisons and Applications of Four Independent Numerical Approaches for Linear Gyrokinetic Drift Modes

    Full text link
    To help reveal the complete picture of linear kinetic drift modes, four independent numerical approaches, based on integral equation, Euler initial value simulation, Euler matrix eigenvalue solution and Lagrangian particle simulation, respectively, are used to solve the linear gyrokinetic electrostatic drift modes equation in Z-pinch with slab simplification and in tokamak with ballooning space coordinate. We identify that these approaches can yield the same solution with the difference smaller than 1\%, and the discrepancies mainly come from the numerical convergence, which is the first detailed benchmark of four independent numerical approaches for gyrokinetic linear drift modes. Using these approaches, we find that the entropy mode and interchange mode are on the same branch in Z-pinch, and the entropy mode can have both electron and ion branches. And, at strong gradient, more than one eigenstate of the ion temperature gradient mode (ITG) can be unstable and the most unstable one can be on non-ground eigenstates. The propagation of ITGs from ion to electron diamagnetic direction at strong gradient is also observed, which implies that the propagation direction is not a decisive criterion for the experimental diagnosis of turbulent mode at the edge plasmas.Comment: 12 pages, 10 figures, accept by Physics of Plasma

    Interchange Reconnection Alfven Wave Generation

    Full text link
    Given recent observational results of interchange reconnection processes in the solar corona and the theoretical development of the S-Web model for the slow solar wind, we extend the analysis of the 3D MHD simulation of interchange reconnection by Edmondson et al. (Astrophys. J. 707, 1427, 2009). Specifically, we analyze the consequences of the dynamic streamer-belt jump that corresponds to flux opening by interchange reconnection. Information about the magnetic field restructuring by interchange reconnection is carried throughout the system by Alfven waves propagating away from the reconnection region, distributing the shear and twist imparted by the driving flows, including shedding the injected stress-energy and accumulated magnetic helicity along newly open fieldlines. We quantify the properties of the reconnection-generated wave activity in the simulation. There is a localized high-frequency component associated with the current sheet/reconnection site and an extended low-frequency component associated with the large-scale torsional Alfven wave generated from the interchange reconnection field restructuring. The characteristic wavelengths of the torsional Alfven wave reflect the spatial size of the energized bipolar flux region. Lastly, we discuss avenues of future research by modeling these interchange reconnection-driven waves and investigating their observational signatures.Comment: 18 pages, 7 figures, accepted for publication in Solar Physic

    The Econometric Analysis of Microscopic Simulation Models

    Get PDF
    Microscopic simulation models are often evaluated based on visual inspection of the results.This paper presents formal econometric techniques to compare microscopic simulation (MS) models with real-life data.A related result is a methodology to compare different MS models with each other.For this purpose, possible parameters of interest, such as mean returns, or autocorrelation patterns, are classified and characterized.For each class of characteristics, the appropriate techniques are presented.We illustrate the methodology by comparing the MS model developed by Levy, Levy, and Solomon (2000) and the market fraction model developed by He and Li (2005a, b) with actual dataMicroscopic simulation models;Econometric analysis

    Excitation function of nucleon and pion elliptic flow in relativistic heavy-ion collisions

    Get PDF
    Within a relativistic transport (ART) model for heavy-ion collisions, we show that the recently observed characteristic change from out-of-plane to in-plane elliptic flow of protons in mid-central Au+Au collisions as the incident energy increases is consistent with the calculated results using a stiff nuclear equation of state (K=380 MeV). We have also studied the elliptic flow of pions and the transverse momentum dependence of both the nucleon and pion elliptic flow in order to gain further insight about the collision dynamics.Comment: 8 pages, 2 figure
    corecore