320,684 research outputs found
Effect of Dependent Scattering on Light Absorption in Highly Scattering Random Media
The approximate nature of radiative transfer equation (RTE) leads to a bunch
of considerations on the effect of "dependent scattering" in random media,
especially particulate media composed of discrete scatterers, in the last a few
decades, which usually indicates those deviations RTE (combined with ISA) lead
to from experimental and exact numerical results due to electromagnetic wave
interference. Here we theoretically and numerically demonstrate the effect of
dependent scattering on absorption in disordered media consisting of highly
scattering scatterers. By making comparison between the independent scattering
approximation-radiative transfer equation (ISA-RTE) and the full-wave coupled
dipole method (CDM), we find that deviations between the two methods increase
as scatterer density in the media increases. The discrepancy also grows with
optical thickness. To quantitatively take dependent scattering effect into
account, we develop a theoretical model using quasi-crystalline approximation
(QCA) to derive dependent-scattering corrected radiative properties, based on
the path-integral diagrammatic technique in multiple scattering theory. The
model results in a more reasonable agreement with numerical simulations. The
present work has profound implications for the coherent scattering physics in
random media with absorption, correctly modeling light absorptance in random
media and interpreting the experimental observations in various applications
for random media such as solar energy concentration, micro/nanofluids,
structural color generation, etc.Comment: 30 pages, 8 figures, submitte
Transition Form Factors and Decay Rates with Extraction of the CKM parameters , ,
A systematic calculation for the transition form factors of heavy to light
mesons () is carried out
by using light-cone sum rules in the framework of heavy quark effective field
theory. The heavy quark symmetry at the leading order of expansion
enables us to reduce the independent wave functions and establish interesting
relations among form factors. Some relations hold for the whole region of
momentum transfer. The meson distribution amplitudes up to twist-4 including
the contributions from higher conformal spin partial waves and light meson mass
corrections are considered. The CKM matrix elements , and
are extracted from some relatively well-measured decay channels. A
detailed prediction for the branching ratios of heavy to light meson decays is
then presented. The resulting predictions for the semileptonic and radiative
decay rates of heavy to light mesons () are found to be compatible with the current experimental data
and can be tested by more precise experiments at B-factory, LHCb, BEPCII and
CLEOc.Comment: 23 pages, 32 figures, 25 tables,published version, minor corrections
and references adde
Gradient design of metal hollow sphere (MHS) foams with density gradients
This is the post-print version of the final paper published in Composites Part B: Engineering. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2011 Elsevier B.V.Metal hollow sphere (MHS) structures with a density gradient have attracted increasing attention in the effort to pursue improved energy absorption properties. In this paper, dynamic crushing of MHS structures of different gradients are discussed, with the gradients being received by stacks of hollow spheres of the same external diameter but different wall thicknesses in the crushing direction. Based on the dynamic performance of MHS structures with uniform density, a crude semi-empirical model is developed for the design of MHS structures in terms of gradient selections for energy absorption and protection against impact. Following this, dynamic responses of density graded MHS foams are comparatively analyzed using explicit finite element simulation and the proposed formula. Results show that the simple semi-empirical model can predict the response of density gradient MHS foams and is ready-to-use in the gradient design of MHS structures.The National Science Foundation of China and the State Key Laboratory of Explosion Science
and Technology (Beijing Institute of Technology
A More Precise Extraction of |V_{cb}| in HQEFT of QCD
The more precise extraction for the CKM matrix element |V_{cb}| in the heavy
quark effective field theory (HQEFT) of QCD is studied from both exclusive and
inclusive semileptonic B decays. The values of relevant nonperturbative
parameters up to order 1/m^2_Q are estimated consistently in HQEFT of QCD.
Using the most recent experimental data for B decay rates, |V_{cb}| is updated
to be |V_{cb}| = 0.0395 \pm 0.0011_{exp} \pm 0.0019_{th} from B\to D^{\ast} l
\nu decay and |V_{cb}| = 0.0434 \pm 0.0041_{exp} \pm 0.0020_{th} from B\to D l
\nu decay as well as |V_{cb}| = 0.0394 \pm 0.0010_{exp} \pm 0.0014_{th} from
inclusive B\to X_c l \nu decay.Comment: 7 pages, revtex, 4 figure
Quantum-disordered slave-boson theory of underdoped cuprates
We study the stability of the spin gap phase in the U(1) slave-boson theory
of the t-J model in connection to the underdoped cuprates. We approach the spin
gap phase from the superconducting state and consider the quantum phase
transition of the slave-bosons at zero temperature by introducing vortices in
the boson superfluid. At finite temperatures, the properties of the bosons are
different from those of the strange metal phase and lead to modified gauge
field fluctuations. As a result, the spin gap phase can be stabilized in the
quantum critical and quantum disordered regime of the boson system. We also
show that the regime of quantum disordered bosons with the paired fermions can
be regarded as the strong coupling version of the recently proposed nodal
liquid theory.Comment: 5 pages, Replaced by the published versio
Experimental investigation of the properties of electrospun nanofibers for potential medical application
Copyright © 2015 Anhui Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Polymer based nanofibers using ethylene-co-vinyl alcohol (EVOH) were fabricated by electrospinning technology. The nanofibers were studied for potential use as dressing materials for skin wounds treatment. Properties closely related to the clinical requirements for wound dressing were investigated, including the fluid uptake ability (FUA), the water vapour transmission rate (WVTR), the bacteria control ability of nanofibers encapsulated with different antibacterial drugs, and Ag of various concentrations. Nanofibre degradation under different environmental conditions was also studied for the prospect of long term usage. The finding confirms the potential of EVOH nanofibers for wound dressing application, including the superior performance compared to cotton gauze and the strong germ killing capacity when Ag particles are present in the nanofibers
- …
