313,079 research outputs found

    Transplanted olfactory ensheathing cells promote regeneration of cut adult rat optic nerve axons

    Get PDF
    Transplantation of olfactory ensheathing cells into spinal cord lesions promotes regeneration of cut axons into terminal fields and functional recovery. This repair involves the formation of a peripheral nerve-like bridge in which perineurial-like fibroblasts are organized into a longitudinal stack of parallel tubular channels, some of which contain regenerating axons enwrapped by Schwann-like olfactory ensheathing cells. The present study examines whether cut retinal ganglion cell axons will also respond to these cells, and if so, whether they form the same type of arrangement. In adult rats, the optic nerve was completely severed behind the optic disc, and a matrix containing cultured olfactory ensheathing cells was inserted between the proximal and distal stumps. After 6 months, the transplanted cells had migrated for up to 10 mm into the distal stump. Anterograde labeling with cholera toxin B showed that cut retinal ganglion cell axons had regenerated through the transplants, entered the distal stump, and elongated for 10 mm together with the transplanted cells. Electron microscopy showed that a peripheral nerve-like tissue had been formed, similar to that seen in the spinal cord transplants. However, in contrast to the spinal cord, the axons did not reach the terminal fields, but terminated in large vesicle-filled expansions beyond which the distal optic nerve stump was reduced to a densely interwoven mass of astrocytic processes

    The Hahn Quantum System

    Full text link
    Using a formulation of quantum mechanics based on the theory of orthogonal polynomials, we introduce a four-parameter system associated with the Hahn and continuous Hahn polynomials. The continuum energy scattering states are written in terms of the continuous Hahn polynomial whose asymptotics give the scattering amplitude and phase shift. On the other hand, the finite number of discrete bound states are associated with the Hahn polynomial.Comment: 18 pages, 7 figure

    Baryon enhancement in high-density QCD and relativistic heavy ion collisions

    Full text link
    We argue that the collinear factorization of the fragmentation functions in high energy nuclear collisions breaks down at transverse momenta pTQs/gp_T \lesssim Q_s/g due to high parton densities in the colliding hadrons and/or nuclei. We find that gluon recombination dominates in that pTp_T region. We calculate the inclusive cross-section for π\pi meson and nucleon production using the low energy theorems for the scale anomaly in QCD, and compare our quantitative baryon-to-meson ratio to the RHIC data.Comment: 4 pages, 2 figure; Contribution to Quark Matter 2008 in Jaipur, India; submitted to J. Phys.

    A topological look at the quantum spin Hall state

    Full text link
    We propose a topological understanding of the quantum spin Hall state without considering any symmetries, and it follows from the gauge invariance that either the energy gap or the spin spectrum gap needs to close on the system edges, the former scenario generally resulting in counterpropagating gapless edge states. Based upon the Kane-Mele model with a uniform exchange field and a sublattice staggered confining potential near the sample boundaries, we demonstrate the existence of such gapless edge states and their robust properties in the presence of impurities. These gapless edge states are protected by the band topology alone, rather than any symmetries.Comment: 5 pages, 4 figure

    Quantum Hall Effect in Thin Films of Three-Dimensional Topological Insulators

    Full text link
    We show that a thin film of a three-dimensional topological insulator (3DTI) with an exchange field is a realization of the famous Haldane model for quantum Hall effect (QHE) without Landau levels. The exchange field plays the role of staggered fluxes on the honeycomb lattice, and the hybridization gap of the surface states is equivalent to alternating on-site energies on the AB sublattices. A peculiar phase diagram for the QHE is predicted in 3DTI thin films under an applied magnetic field, which is quite different from that either in traditional QHE systems or in graphene.Comment: 4 pages, 4 figure
    corecore