16,918 research outputs found
Electron-doped phosphorene: A potential monolayer superconductor
We predict by first-principles calculations that the electron-doped
phosphorene is a potential BCS-like superconductor. The stretching modes at the
Brillouin-zone center are remarkably softened by the electron-doping, which
results in the strong electron-phonon coupling. The superconductivity can be
introduced by a doped electron density () above
cm, and may exist over the liquid helium temperature when cm. The maximum critical temperature is predicted to be
higher than 10 K. The superconductivity of phosphorene will significantly
broaden the applications of this novel material
Directionally asymmetric self-assembly of cadmium sulfide nanotubes using porous alumina nanoreactors: Need for chemohydrodynamic instability at the nanoscale
We explore nanoscale hydrodynamical effects on synthesis and self-assembly of
cadmium sulfide nanotubes oriented along one direction. These nanotubes are
synthesized by horizontal capillary flow of two different chemical reagents
from opposite directions through nanochannels of porous anodic alumina which
are used primarily as nanoreactors. We show that uneven flow of different
chemical precursors is responsible for directionally asymmetric growth of these
nanotubes. On the basis of structural observations using scanning electron
microscopy, we argue that chemohydrodynamic convective interfacial instability
of multicomponent liquid-liquid reactive interface is necessary for sustained
nucleation of these CdS nanotubes at the edges of these porous nanochannels
over several hours. However, our estimates clearly suggest that classical
hydrodynamics cannot account for the occurrence of such instabilities at these
small length scales. Therefore, we present a case which necessitates further
investigation and understanding of chemohydrodynamic fluid flow through
nanoconfined channels in order to explain the occurrence of such interfacial
instabilities at nanometer length scales.Comment: 26 pages, 6 figures; http://www.iiserpune.ac.in/researchhighlight
Recommended from our members
Sedimentation of the Lower Cretaceous Xiagou formation and Its Response to Regional Tectonics in the Qingxi Sag, Jiuquan Basin, NW China
Under the constraint of an isochronous sequence stratigraphic framework, sediment infill of the Xiagou Formation reflects the overall control of dynamic tectonic movements and episodic sedimentations in the Qingxi Sag. Structure reactivity during post-depositional processes could cause stratigraphic variations in longitudinal time and lateral space. This study documents sediment infill features and their response to the tectonic evolutions of the Qingxi Sag. The data sets include comparison of cores, well drilling, 3D seismic, inter-well correlation, wave impedance inversion profiles, original strata recovery data, sedimentary fades spatial evolution and their superimposition with paleogeomorphology. The Jiuquan Basin is a Mesozoic-Cenozoic superposition basin comprising an early rifting graben phase and a later compression phase. Since the Early Cretaceous, the basin has undergone four major tectonic episodes: 1) extension during the Early Cretaceous, 2) tectonic inversion caused by northwest-southeast contraction from the Late Cretaceous to the Paleocene, 3) weak extension from the Eocene to the Miocene and 4) contraction from the Miocene to the present. Therefore, the Jiuquan Basin is the product of taphrogenic, collisional and shearing movements. Seismic interpretations of sequence and maximum flooding surface divide the Xiagou Formation into three third order sequences: SQK1g(0), SQK1g(1) and SQK1g(2+3). Five sedimentary facies associations are identified: the shoreland plain, fan delta dominated sedimentary systems, turbidite deposits, shallow lakes and half-deep lake systems. From K1g(0) to K1g(2+3), decreased sandstone percentages in three fan delta areas indicate a continuously transgressive process, which shows the transition from proximal to distal sites in most statistic wells and an obvious decrease of fan delta scales. The northeast-southwest faults control the lakeward distributions of delta fronts and turbidite fans. The correspondence of sedimentary infill and its response to tectonic movements have been demonstrated in the Qingxi Sag. The more active eastern part of the northeastern boundary fault has an important influence on the northeastward migration of depocenters in the Xiagou Formation. The topography developed continuously from K1g(0) to K1g(2+3), but the diminished subsidence indicates the dominant geological process varying from intense fault rifting in an early period to relatively gentle and overall subsidence in a later period during the Early Cretaceous. (C) 2013 Elsevier Ltd. All rights reserved.Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education TPR-2011-09Project of "Double strong effect, driving mechanism and hydrocarbon significance of tectonic activity during depositional period of Dongying Formation in Qikou and Nanpu Sag, Eastern China" 41272122Geological Science
Phonon arithmetic in a trapped ion system
Single-quantum level operations are important tools to manipulate a quantum state. Annihilation or creation of single particles translates a quantum state to another by adding or subtracting a particle, depending on how many are already in the given state. The operations are probabilistic and the success rate has yet been low in their experimental realization. Here we experimentally demonstrate (near) deterministic addition and subtraction of a bosonic particle, in particular a phonon of ionic motion in a harmonic potential. We realize the operations by coupling phonons to an auxiliary two-level system and applying transitionless adiabatic passage. We show handy repetition of the operations on various initial states and demonstrate by the reconstruction of the density matrices that the operations preserve coherences. We observe the transformation of a classical state to a highly non-classical one and a Gaussian state to a non-Gaussian one by applying a sequence of operations deterministically
Antiviral treatment alters the frequency of activating and inhibitory receptor-expressing natural killer cells in chronic Hepatitis B virus infected patients
Natural killer (NK) cells play a critical role in innate antiviral immunity, but little is known about the impact of antiviral therapy on the frequency of NK cell subsets. To this aim, we performed this longitudinal study to examine the dynamic changes of the frequency of different subsets of NK cells in CHB patients after initiation of tenofovir or adefovir therapy. We found that NK cell numbers and subset distribution differ between CHB patients and normal subjects; furthermore, the association was found between ALT level and CD158b+ NK cell in HBV patients. In tenofovir group, the frequency of NK cells increased during the treatment accompanied by downregulated expression of NKG2A and KIR2DL3. In adefovir group, NK cell numbers did not differ during the treatment, but also accompanied by downregulated expression of NKG2A and KIR2DL3. Our results demonstrate that treatment with tenofovir leads to viral load reduction, and correlated with NK cell frequencies in peripheral blood of chronic hepatitis B virus infection. In addition, treatments with both tenofovir and adefovir in chronic HBV infected patients induce a decrease of the frequency of inhibitory receptor+ NK cells, which may account for the partial restoration of the function of NK cells in peripheral blood following treatment
- …
