25,272 research outputs found
Extended radio emission after the soft X-ray maximum of the NOAA 9077 AR solar flare on July 10, 2000
An extended radio emission after a soft X-ray (SXR) maximum was detected in the active region NOAA 9077 by several observatories for the solar flare after 21:42 UT on July 10, 2000. Also some radio fine structures before the enduring radio emission were observed with the 1.0-2.0 GHz spectrometer of Beijing Astronomical Observatory (BAO) in the same time. We apply a shear-driven quadrupolar reconnection model (SQR) to analyze the fine structures and the related radio emission. We find that the footpoint shear motion of the flux loop is accompanied with the emerging up of the loop during the reconnection process. We tentatively interpret the extended radio emission as the nonthermal radiation caused by a new reconnection process between emerging flux loop and pre-existing overarching loop after the soft X-ray maximum
Tropospheric temperature response to stratospheric ozone recovery in the 21st century
Recent simulations predicted that the stratospheric ozone layer will likely return to pre-1980 levels in the middle of the 21st century, as a result of the decline of ozone depleting substances under the Montreal Protocol. Since the ozone layer is an important component in determining stratospheric and tropospheric-surface energy balance, the recovery of stratospheric ozone may have significant impact on tropospheric-surface climate. Here, using multi-model results from both the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC-AR4) models and coupled chemistry-climate models, we show that as ozone recovery is considered, the troposphere is warmed more than that without considering ozone recovery, suggesting an enhancement of tropospheric warming due to ozone recovery. It is found that the enhanced tropospheric warming is mostly significant in the upper troposphere, with a global and annual mean magnitude of ~0.41 K for 2001–2050. We also find that relatively large enhanced warming occurs in the extratropics and polar regions in summer and autumn in both hemispheres, while the enhanced warming is stronger in the Northern Hemisphere than in the Southern Hemisphere. Enhanced warming is also found at the surface. The global and annual mean enhancement of surface warming is about 0.16 K for 2001–2050, with maximum enhancement in the winter Arctic
Photometric and Spectroscopic Observations of the Algol Type Binary V Triangle
Time-series, multi-color photometry and high-resolution spectra of the short
period eclipsing binary V Tri were obtained by observations. The completely
covered light and radial velocity curves of the binary system are presented.
All times of light minima derived from both photoelectric and CCD photometry
were used to calculate the orbital period and new ephemerides of the eclipsing
system. The analysis of diagram reveals that the orbital period is
, decreasing at a rate of $dP/dt=-7.80\times10^{-8} d\
yr^{-1} 1.60\pm0.07 M_\odot1.64\pm0.02 R_\odot14.14\pm0.73 L_\odot0.74\pm0.02 M_\odot1.23\pm0.02 R_\odot1.65\pm0.05 L_\odot$, respectively.Comment: 11 pages, 6 figures, Accepted for publication by A
Observation of non-Fermi liquid behavior in hole-doped LiFeVAs
We synthesized a series of V-doped LiFeVAs single crystals. The
superconducting transition temperature of LiFeAs decreases rapidly at a
rate of 7 K per 1\% V. The Hall coefficient of LiFeAs switches from negative to
positive with 4.2\% V doping, showing that V doping introduces hole carriers.
This observation is further confirmed by the evaluation of the Fermi surface
volume measured by angle-resolved photoemission spectroscopy (ARPES), from
which a 0.3 hole doping per V atom introduced is deduced. Interestingly, the
introduction of holes does not follow a rigid band shift. We also show that the
temperature evolution of the electrical resistivity as a function of doping is
consistent with a crossover from a Fermi liquid to a non-Fermi liquid. Our
ARPES data indicate that the non-Fermi liquid behavior is mostly enhanced when
one of the hole Fermi surfaces is well nested by the
antiferromagnetic wave vector to the inner electron Fermi surface pocket with
the orbital character. The magnetic susceptibility of
LiFeVAs suggests the presence of strong magnetic impurities
following V doping, thus providing a natural explanation to the rapid
suppression of superconductivity upon V doping.Comment: 7 pages, 5 figures. See published version for the latest updat
A characterization of compact complex tori via automorphism groups
We show that a compact Kaehler manifold X is a complex torus if both the
continuous part and discrete part of some automorphism group G of X are
infinite groups, unless X is bimeromorphic to a non-trivial G-equivariant
fibration. Some applications to dynamics are given.Comment: title changed, to appear in Math. An
Momentum Distribution of Near-Zero-Energy Photoelectrons in the Strong-Field Tunneling Ionization in the Long Wavelength Limit
We investigate the ionization dynamics of Argon atoms irradiated by an
ultrashort intense laser of a wavelength up to 3100 nm, addressing the momentum
distribution of the photoelectrons with near-zero-energy. We find a surprising
accumulation in the momentum distribution corresponding to meV energy and a
\textquotedblleft V"-like structure at the slightly larger transverse momenta.
Semiclassical simulations indicate the crucial role of the Coulomb attraction
between the escaping electron and the remaining ion at extremely large
distance. Tracing back classical trajectories, we find the tunneling electrons
born in a certain window of the field phase and transverse velocity are
responsible for the striking accumulation. Our theoretical results are
consistent with recent meV-resolved high-precision measurements.Comment: 5 pages, 4 figure
ZIKV infection activates the IRE1-XBP1 and ATF6 pathways of unfolded protein response in neural cells.
BACKGROUND: Many viruses depend on the extensive membranous network of the endoplasmic reticulum (ER) for their translation, replication, and packaging. Certain membrane modifications of the ER can be a trigger for ER stress, as well as the accumulation of viral protein in the ER by viral infection. Then, unfolded protein response (UPR) is activated to alleviate the stress. Zika virus (ZIKV) is a mosquito-borne flavivirus and its infection causes microcephaly in newborns and serious neurological complications in adults. Here, we investigated ER stress and the regulating model of UPR in ZIKV-infected neural cells in vitro and in vivo. METHODS: Mice deficient in type I and II IFN receptors were infected with ZIKV via intraperitoneal injection and the nervous tissues of the mice were assayed at 5 days post-infection. The expression of phospho-IRE1, XBP1, and ATF6 which were the key markers of ER stress were analyzed by immunohistochemistry assay in vivo. Additionally, the nuclear localization of XBP1s and ATF6n were analyzed by immunohistofluorescence. Furthermore, two representative neural cells, neuroblastoma cell line (SK-N-SH) and astrocytoma cell line (CCF-STTG1), were selected to verify the ER stress in vitro. The expression of BIP, phospho-elF2α, phospho-IRE1, and ATF6 were analyzed through western blot and the nuclear localization of XBP1s was performed by confocal immunofluorescence microscopy. RT-qPCR was also used to quantify the mRNA level of the UPR downstream genes in vitro and in vivo. RESULTS: ZIKV infection significantly upregulated the expression of ER stress markers in vitro and in vivo. Phospho-IRE1 and XBP1 expression significantly increased in the cerebellum and mesocephalon, while ATF6 expression significantly increased in the mesocephalon. ATF6n and XBP1s were translocated into the cell nucleus. The levels of BIP, ATF6, phospho-elf2α, and spliced xbp1 also significantly increased in vitro. Furthermore, the downstream genes of UPR were detected to investigate the regulating model of the UPR during ZIKV infection in vitro and in vivo. The transcriptional levels of atf4, gadd34, chop, and edem-1 in vivo and that of gadd34 and chop in vitro significantly increased. CONCLUSION: Findings in this study demonstrated that ZIKV infection activates ER stress in neural cells. The results offer clues to further study the mechanism of neuropathogenesis caused by ZIKV infection
Recommended from our members
Fire performance of non-load-bearing light-gauge slotted steel stud walls
Experimental and numerical studies on the performance of light-gauge slotted steel stud walls subjected to fire are presented in this paper. Four full-scale light-gauge slotted steel stud walls were tested under the ISO-834 standard fire loading. Temperatures at the location of exposed surface, unexposed surface, and cross section of steel studs were measured. Spalling of the heated gypsum board during testing was investigated. The major factors affecting the behavior of this type of wall, including the height of the web, layers of gypsum boards and use of mortar on unexposed surface, were studied.
Based on the test results, a three-dimensional FE model of the light-gauge slotted steel stud wall was developed using ABAQUS to analyze its fire performance. The model was validated against experiments in this study and other related test data. The FE model was employed to conduct further parametric studies. Parameters include the spalling time of heated gypsum boards, the height of the web, rows of slots, and layers of gypsum boards. The effects of these key factors on the temperatures of the exposed surface, unexposed surface and studs are discussed
- …
