11,541 research outputs found
Nonlinear response and scaling law in the vortex state of d-wave superconductors
We study the field dependence of the quasi-particle density of states, the
thermodynamics and the transport properties in the vortex state of d-wave
superconductors when a magnetic field is applied perpendicular to the
conducting plane, specially for the low field and the low temperature compared
to the upper critical field and transition temperature, respectively, and . Both the superfluid density and the spin
susceptibility exhibit the characteristic -field dependence, while
the nuclear spin lattice relaxation rate T and the thermal
conductivity are linear in field . With increasing temperature, these
quantities exhibit the scaling behavior in . The present theory
applies to 2D -wave superconductor as well; a possible candidate of the
superconductivity in SrRuO.Comment: 11 pages, 4 figure
Low-lying excitations around a single vortex in a d-wave superconductor
A full quantum-mechanical treatment of the Bogoliubov-de Gennes equation for
a single vortex in a d-wave superconductor is presented. First, we find
low-energy states extended in four diagonal directions, which have no
counterpart in a vortex of s-wave superconductors. The four-fold symmetry is
due to 'quantum effect', which is enhanced when is small. Second,
for , a peak with a large energy gap is
found in the density of states, which is due to the formation of the lowest
bound states.Comment: 7pages, Revte
Novel vortex lattice transition in d-wave superconductors
We study the vortex state in a magnetic field parallel to the axis in the
framework of the extended Ginzburg Landau equation. We find the vortex acquires
a fourfold modulation proportional to where is the angle
makes with the -axis. This term gives rise to an attractive
interaction between two vortices when they are aligned parallel to or
. We predict the first order vortex lattice transition at
from triangular into the square lattice
tilted by from the axis. This gives the critical field
a few Tesla for YBCO and Bi2212 monocrystals at low temperatures ().Comment: 6 pages, 4 figure
Discovery From Non-Parties (Third-Party Discovery) in International Arbitration
International arbitration rules and many arbitration laws usually provide procedures that permit tribunals to order parties to disclose documents and other materials to the other parties.1 More complex are the rules that determine opportunities to obtain discovery from persons that are not party to the arbitration (third-party discovery). This article will review third-party discovery under the Federal Arbitration Act (FAA) and the provisions of the US Code s.1782 that authorise US courts to act in aid of actions before foreign tribunals. Section 1782 has unique interest at this time because it figured prominently in the EU antitrust investigation of Intel that was initiated on request from Advanced Micro Devices (AMD). Early in that investigation, AMD filed a s.1782 request in the US District Court to obtain evidence from US sources for submission to the DG-Competition of the European Commission (EC). This request ultimately led to the Supreme Court’s decision in Intel Corp v Advanced Micro Devices Inc2 which appeared to significantly expand the scope of s.1782. Ironically, after AMD won on key legal issues in the Supreme Court, the District Court on remand exercised its discretion and denied the request for judicial assistance. This paper first describes the FAA non-party discovery rules and the split among the federal appellate courts concerning the authority of arbitrators to order prehearing discovery from non-parties. Next, it provides an analysis of the meaning of the terms “interested party” and “tribunal”—terms that were controversially interpreted by the Supreme Court in Intel and are essential to the application of s.1782. Finally, it discusses the “discretionary” factors used by the federal courts in deciding whether to grant a s.1782 request even when the statutory criteria are met. The opportunity to exercise this discretion seems to rebut the argument that the Supreme Court’s interpretation of s.1782 gives participants before foreign tribunals more discovery rights in the United States than are available to the parties in arbitrations covered by the FAA
Holographic interacting dark energy in the braneworld cosmology
We investigate a model of brane cosmology to find a unified description of
the radiation-matter-dark energy universe. It is of the interacting holographic
dark energy with a bulk-holographic matter . This is a five-dimensional
cold dark matter, which plays a role of radiation on the brane. Using the
effective equations of state instead of the
native equations of state , we show that this model
cannot accommodate any transition from the dark energy with to the phantom regime . Furthermore, the case of interaction between cold dark matter and
five dimensional cold dark matter is considered for completeness. Here we find
that the redshift of matter-radiation equality is the same order
as . Finally, we obtain
a general decay rate which is suitable for describing all interactions
including the interaction between holographic dark energy and cold dark matter.Comment: 17 pages, 4 figure
Tunneling current in triplet f-wave superconductors with horizontal lines of nodes
We calculate the tunneling conductance spectra of a
normal-metal/insulator/triplet superconductor using the
Blonder-Tinkham-Klapwijk (BTK) formulation. Possible states for the
superconductor are considered with horizontal lines of nodes, breaking the time
reversal symmetry. These results would be useful to discriminate between
pairing states in superonductor SrRuO and also in UPt.Comment: 12 pages, 7 figure
A Spectral Line Survey from 138.3 to 150.7 GHZ toward Orion-KL
We present the results of a spectral line survey from 138.3 to 150.7 GHz
toward Orion-KL. The observations were made using the 14 m radio telescope of
Taeduk Radio Astronomy Observatory. Typical system temperatures were between
500 and 700 K, with the sensitivity between K in units of .
A total of 149 line spectra are detected in this survey. Fifty lines have
been previously reported, however we find 99 new detections. Among these new
lines, 32 are `unidentified', while 67 are from molecular transitions with
known identifications. There is no detection of H or He recombination lines.
The identified spectra are from a total of 16 molecular species and their
isotopic variants. In the range from 138.3 to 150.7 GHz, the strongest spectral
line is the J=3-2 transition of CS molecule, followed by transitions of the
, , , and . Spectral lines from
the large organic molecules such as , , , and are prominent; with 80 % of the
identified lines arising from transitions of these molecules. The rotational
temperatures and column densities are derived using the standard rotation
diagram analysis for (), , and with and . These estimates are fairly comparable to the values for the
same molecule in other frequency regions by other studies.Comment: 10 figures, 2 tex files for a manuscript and tables, accepted to Ap
- …
