84,426 research outputs found

    Doppler Amplification of Motion of a Trapped Three-Level Ion

    Full text link
    The system of a trapped ion translationally excited by a blue-detuned near-resonant laser, sometimes described as an instance of a phonon laser, has recently received attention as interesting in its own right and for its application to non-destructive readout of internal states of non-fluorescing ions. Previous theoretical work has been limited to cases of two-level ions. Here, we perform simulations to study the dynamics of a phonon laser involving the Λ\Lambda-type ^{138}\mbox{Ba}^{+} ion, in which coherent population trapping effects lead to different behavior than in the previously studied cases. We also explore optimization of the laser parameters to maximize amplification gain and signal-to-noise ratio for internal state readout

    A numerical modelling study on regional mercury budget for eastern North America

    No full text
    International audienceIn this study, we have integrated an up-to-date physio-chemical transformation mechanism of Hg into the framework of US EPA's CMAQ model system. In addition, the model adapted detailed calculations of the air-surface exchange for Hg to properly describe Hg re-emissions and dry deposition from and to natural surfaces. The mechanism covers Hg in three categories, elemental Hg (Hg0), reactive gaseous Hg (RGM) and particulate Hg (HgP). With interfacing to MM5 (meteorology processor) and SMOKE (emission processor), we applied the model to a 4-week period in June/July 1995 on a domain covering most of eastern North America. Results indicate that the model simulates reasonably well the levels of total gaseous Hg (TGM) and the specific Hg wet deposition measurements made by the Hg deposition network (MDN). Moreover, results from various scenario runs reveal that the Hg system behaves in a closely linear way in terms of contributions from different source categories, i.e. anthropogenic emissions, natural re-emissions and background. Analyses of the scenario results suggest that 37% of anthropogenically emitted Hg was deposited back in the model domain with 5155.2 kg of anthropogenic Hg moving out of the domain during the simulation period. Overall, the domain served as a source, which supplied a net 461.2 kg of Hg to the global background pool over the period. Our model validation and a sensitivity test further rationalized the rate constant for gaseous oxidation of Hg0 by hydroxyl radical OH used in the global scale modelling study by Bergan and Rodhe (2001). A further laboratory determination of the reaction rate constant, including its temperature dependence, stands as one of the important issues critical to improving our knowledge on the budget and cycling of Hg

    A Probabilistic Embedding Clustering Method for Urban Structure Detection

    Full text link
    Urban structure detection is a basic task in urban geography. Clustering is a core technology to detect the patterns of urban spatial structure, urban functional region, and so on. In big data era, diverse urban sensing datasets recording information like human behaviour and human social activity, suffer from complexity in high dimension and high noise. And unfortunately, the state-of-the-art clustering methods does not handle the problem with high dimension and high noise issues concurrently. In this paper, a probabilistic embedding clustering method is proposed. Firstly, we come up with a Probabilistic Embedding Model (PEM) to find latent features from high dimensional urban sensing data by learning via probabilistic model. By latent features, we could catch essential features hidden in high dimensional data known as patterns; with the probabilistic model, we can also reduce uncertainty caused by high noise. Secondly, through tuning the parameters, our model could discover two kinds of urban structure, the homophily and structural equivalence, which means communities with intensive interaction or in the same roles in urban structure. We evaluated the performance of our model by conducting experiments on real-world data and experiments with real data in Shanghai (China) proved that our method could discover two kinds of urban structure, the homophily and structural equivalence, which means clustering community with intensive interaction or under the same roles in urban space.Comment: 6 pages, 7 figures, ICSDM201

    Semantic bottleneck for computer vision tasks

    Full text link
    This paper introduces a novel method for the representation of images that is semantic by nature, addressing the question of computation intelligibility in computer vision tasks. More specifically, our proposition is to introduce what we call a semantic bottleneck in the processing pipeline, which is a crossing point in which the representation of the image is entirely expressed with natural language , while retaining the efficiency of numerical representations. We show that our approach is able to generate semantic representations that give state-of-the-art results on semantic content-based image retrieval and also perform very well on image classification tasks. Intelligibility is evaluated through user centered experiments for failure detection

    Universal Quantum Degeneracy Point for Superconducting Qubits

    Full text link
    The quantum degeneracy point approach [D. Vion et al., Science 296, 886 (2002)] effectively protects superconducting qubits from low-frequency noise that couples with the qubits as transverse noise. However, low-frequency noise in superconducting qubits can originate from various mechanisms and can couple with the qubits either as transverse or as longitudinal noise. Here, we present a quantum circuit containing a universal quantum degeneracy point that protects an encoded qubit from arbitrary low-frequency noise. We further show that universal quantum logic gates can be performed on the encoded qubit with high gate fidelity. The proposed scheme is robust against small parameter spreads due to fabrication errors in the superconducting qubits.Comment: 7 pages, 4 figure
    corecore