519 research outputs found

    Exciton Gas Compression and Metallic Condensation in a Single Semiconductor Quantum Wire

    Get PDF
    We study the metal-insulator transition in individual self-assembled quantum wires and report optical evidences of metallic liquid condensation at low temperatures. Firstly, we observe that the temperature and power dependence of the single nanowire photoluminescence follow the evolution expected for an electron-hole liquid in one dimension. Secondly, we find novel spectral features that suggest that in this situation the expanding liquid condensate compresses the exciton gas in real space. Finally, we estimate the critical density and critical temperature of the phase transition diagram at nc1×105n_c\sim1\times10^5 cm1^{-1} and Tc35T_c\sim35 K, respectively.Comment: 4 pages, 5 figure

    Charge control in laterally coupled double quantum dots

    Get PDF
    We investigate the electronic and optical properties of InAs double quantum dots grown on GaAs (001) and laterally aligned along the [110] crystal direction. The emission spectrum has been investigated as a function of a lateral electric field applied along the quantum dot pair mutual axis. The number of confined electrons can be controlled with the external bias leading to sharp energy shifts which we use to identify the emission from neutral and charged exciton complexes. Quantum tunnelling of these electrons is proposed to explain the reversed ordering of the trion emission lines as compared to that of excitons in our system.Comment: 4 pages, 4 figures submitted to PRB Rapid Com

    Wilson-Polchinski exact renormalization group equation for O(N) systems: Leading and next-to-leading orders in the derivative expansion

    Full text link
    With a view to study the convergence properties of the derivative expansion of the exact renormalization group (RG) equation, I explicitly study the leading and next-to-leading orders of this expansion applied to the Wilson-Polchinski equation in the case of the NN-vector model with the symmetry O(N)\mathrm{O}(N) . As a test, the critical exponents % \eta and ν\nu as well as the subcritical exponent ω\omega (and higher ones) are estimated in three dimensions for values of NN ranging from 1 to 20. I compare the results with the corresponding estimates obtained in preceding studies or treatments of other O(N)\mathrm{O}(N) exact RG equations at second order. The possibility of varying NN allows to size up the derivative expansion method. The values obtained from the resummation of high orders of perturbative field theory are used as standards to illustrate the eventual convergence in each case. A peculiar attention is drawn on the preservation (or not) of the reparametrisation invariance.Comment: Dedicated to Lothar Sch\"afer on the occasion of his 60th birthday. Final versio

    Far-from-equilibrium quantum many-body dynamics

    Full text link
    The theory of real-time quantum many-body dynamics as put forward in Ref. [arXiv:0710.4627] is evaluated in detail. The formulation is based on a generating functional of correlation functions where the Keldysh contour is closed at a given time. Extending the Keldysh contour from this time to a later time leads to a dynamic flow of the generating functional. This flow describes the dynamics of the system and has an explicit causal structure. In the present work it is evaluated within a vertex expansion of the effective action leading to time evolution equations for Green functions. These equations are applicable for strongly interacting systems as well as for studying the late-time behaviour of nonequilibrium time evolution. For the specific case of a bosonic N-component phi^4 theory with contact interactions an s-channel truncation is identified to yield equations identical to those derived from the 2PI effective action in next-to-leading order of a 1/N expansion. The presented approach allows to directly obtain non-perturbative dynamic equations beyond the widely used 2PI approximations.Comment: 20 pp., 6 figs; submitted version with added references and typos corrected

    Comparison of Different Parallel Implementations of the 2+1-Dimensional KPZ Model and the 3-Dimensional KMC Model

    Full text link
    We show that efficient simulations of the Kardar-Parisi-Zhang interface growth in 2 + 1 dimensions and of the 3-dimensional Kinetic Monte Carlo of thermally activated diffusion can be realized both on GPUs and modern CPUs. In this article we present results of different implementations on GPUs using CUDA and OpenCL and also on CPUs using OpenCL and MPI. We investigate the runtime and scaling behavior on different architectures to find optimal solutions for solving current simulation problems in the field of statistical physics and materials science.Comment: 14 pages, 8 figures, to be published in a forthcoming EPJST special issue on "Computer simulations on GPU

    Ion sources at GANIL

    Get PDF
    International audienceThe GANIL produces since many years heavy ion beams with Electron Cyclotron Resonance ion sources. Different facilities have been constructed during the last years in order to allow experiments in a large range of energy (from some tens of kV to 100 MeV/nucleon). The list of available ions has been greatly extended with the construction of the SPIRAL1 facility that produces and accelerates radioactives ions . An overview of the different developments made at GANIL for stable and radioactive ion beam production including the sources for the SPIRAL2 project is given in this paper

    Nonperturbative renormalization group approach to frustrated magnets

    Full text link
    This article is devoted to the study of the critical properties of classical XY and Heisenberg frustrated magnets in three dimensions. We first analyze the experimental and numerical situations. We show that the unusual behaviors encountered in these systems, typically nonuniversal scaling, are hardly compatible with the hypothesis of a second order phase transition. We then review the various perturbative and early nonperturbative approaches used to investigate these systems. We argue that none of them provides a completely satisfactory description of the three-dimensional critical behavior. We then recall the principles of the nonperturbative approach - the effective average action method - that we have used to investigate the physics of frustrated magnets. First, we recall the treatment of the unfrustrated - O(N) - case with this method. This allows to introduce its technical aspects. Then, we show how this method unables to clarify most of the problems encountered in the previous theoretical descriptions of frustrated magnets. Firstly, we get an explanation of the long-standing mismatch between different perturbative approaches which consists in a nonperturbative mechanism of annihilation of fixed points between two and three dimensions. Secondly, we get a coherent picture of the physics of frustrated magnets in qualitative and (semi-) quantitative agreement with the numerical and experimental results. The central feature that emerges from our approach is the existence of scaling behaviors without fixed or pseudo-fixed point and that relies on a slowing-down of the renormalization group flow in a whole region in the coupling constants space. This phenomenon allows to explain the occurence of generic weak first order behaviors and to understand the absence of universality in the critical behavior of frustrated magnets.Comment: 58 pages, 15 PS figure

    Study of cosolvent-induced α-chymotrypsin fibrillogenesis: Does protein surface hydrophobicity trigger early stages of aggregation reaction?

    Get PDF
    The misfolding of specific proteins is often associated with their assembly into fibrillar aggregates, commonly termed amyloid fibrils. Despite the many efforts expended to characterize amyloid formation in vitro, there is no deep knowledge about the environment (in which aggregation occurs) as well as mechanism of this type of protein aggregation. Alpha-chymotrypsin was recently driven toward amyloid aggregation by the addition of intermediate concentrations of trifluoroethanol. In the present study, approaches such as turbidimetric, thermodynamic, intrinsic fluorescence and quenching studies as well as chemical modification have been successfully used to elucidate the underlying role of hydrophobic interactions (involved in early stages of amyloid formation) in α-chymotrypsin-based experimental system. © 2009 Springer Science+Business Media, LLC

    Introduction to the functional RG and applications to gauge theories

    Get PDF
    These lectures contain an introduction to modern renormalization group (RG) methods as well as functional RG approaches to gauge theories. In the first lecture, the functional renormalization group is introduced with a focus on the flow equation for the effective average action. The second lecture is devoted to a discussion of flow equations and symmetries in general, and flow equations and gauge symmetries in particular. The third lecture deals with the flow equation in the background formalism which is particularly convenient for analytical computations of truncated flows. The fourth lecture concentrates on the transition from microscopic to macroscopic degrees of freedom; even though this is discussed here in the language and the context of QCD, the developed formalism is much more general and will be useful also for other systems.Comment: 60 pages, 14 figures, Lectures held at the 2006 ECT* School "Renormalization Group and Effective Field Theory Approaches to Many-Body Systems", Trento, Ital
    corecore