2,237 research outputs found
Ultra-high-energy cosmic ray acceleration by relativistic blast waves
We consider the acceleration of charged particles at the ultra-relativistic
shocks, with Lorentz factors \Gamma_s >> 1 relative to the upstream medium,
arising in relativistic fireball models of gamma-ray bursts (GRBs). We show
that for Fermi-type shock acceleration, particles initially isotropic in the
upstream medium can gain a factor of order \Gamma_s^2 in energy in the first
shock crossing cycle, but that the energy gain factor for subsequent shock
crossing cycles is only of order 2, because for realistic deflection processes
particles do not have time to re-isotropise upstream before recrossing the
shock.
We evaluate the maximum energy attainable and the efficiency of this process,
and show that for a GRB fireball expanding into a typical interstellar medium,
these exclude the production of ultra-high-energy cosmic rays (UHECRs), with
energies in the range 10^{18.5} - 10^{20.5} eV, by the blast wave. We propose,
however, that in the context of neutron star binaries as the progenitors of
GRBs, relativistic ions from the pulsar wind bubbles produced by these systems
could be accelerated by the blast wave. We show that if the known binary
pulsars are typical, the maximum energy, efficiency, and spectrum in this case
can account for the observed population of UHECRs.Comment: Accepted for MNRAS (Letters), with minor revisions. LaTeX, 5 pages,
uses mn.st
A wind model for high energy pulses
A solution to the sigma problem - that of finding a mechanism capable of
converting Poynting energy flux to particle-borne energy flux in a pulsar wind
- was proposed several years ago by Coroniti and Michel who considered a
particular prescription for magnetic reconnection in a striped wind. This
prescription was later shown to be ineffective. In this paper, we discuss the
basic microphysics of the reconnection process and conclude that a more rapid
prescription is permissible. Assuming dissipation to set in at some distance
outside the light-cylinder, we compute the resulting radiation signature and
find that the synchrotron emission of heated particles appears periodic, in
general showing both a pulse and an interpulse. The predicted spacing of these
agrees well with observation in the case of the Crab and Vela pulsars. Using
parameters appropriate for the Crab pulsar - magnetization parameter at the
light cylinder sigma_L = 6 x 10^4, Lorentz factor Gamma=250 - reasonable
agreement is found with the observed total pulsed luminosity. This suggest that
the high-energy pulses from young pulsars originate not in the co-rotating
magnetosphere within the light cylinder (as in all other models) but from the
radially directed wind well outside it.Comment: 6 pages, 2 figures. To appear in the Proceedings of the 270.
WE-Heraeus Seminar on Neutron Stars, Pulsars and Supernova Remnants, Jan.
21-25, 2002, Physikzentrum Bad Honnef, eds W. Becker, H. Lesch & J. Truemper.
Proceedings are available as MPE-Report 27
A new nearby pulsar wind nebula overlapping the RX J0852.0-4622 supernova remnant
Energetic pulsars can be embedded in a nebula of relativistic leptons which
is powered by the dissipation of the rotational energy of the pulsar. The
object PSR J0855-4644 is an energetic and fast-spinning pulsar (Edot =
1.1x10^36 erg/s, P=65 ms) discovered near the South-East rim of the supernova
remnant (SNR) RX J0852.0-4622 (aka Vela Jr) by the Parkes multibeam survey. The
position of the pulsar is in spatial coincidence with an enhancement in X-rays
and TeV gamma-rays, which could be due to its putative pulsar wind nebula
(PWN).
The purpose of this study is to search for diffuse non-thermal X-ray emission
around PSR J0855-4644 to test for the presence of a PWN and to estimate the
distance to the pulsar. An X-ray observation was carried out with the
XMM-Newton satellite to constrain the properties of the pulsar and its nebula.
The absorption column density derived in X-rays from the pulsar and from
different regions of the rim of the SNR was compared with the absorption
derived from the atomic (HI) and molecular (12CO) gas distribution along the
corresponding lines of sight to estimate the distance of the pulsar and of the
SNR.
The observation has revealed the X-ray counterpart of the pulsar together
with surrounding extended emission thus confirming the existence of a PWN. The
comparison of column densities provided an upper limit to the distance of the
pulsar PSR J0855-4644 and the SNR RX J0852.0-4622 (d<900 pc). Although both
objects are at compatible distances, we rule out that the pulsar and the SNR
are associated. With this revised distance, PSR J0855-4644 is the second most
energetic pulsar, after the Vela pulsar, within a radius of 1 kpc and could
therefore contribute to the local cosmic-ray e-/e+ spectrum.Comment: 10 pages, 9 Figures. Accepted for publication in A&
Detection of TeV emission from the intriguing composite SNR G327.1-1.1
The shock wave of supernova remnants (SNRs) and the wind termination shock in
pulsar wind nebula (PWNe) are considered as prime candidates to accelerate the
bulk of Galactic cosmic ray (CR) ions and electrons. The SNRs hosting a PWN
(known as composite SNRs) provide excellent laboratories to test these
hypotheses. The SNR G327.1-1.1 belongs to this category and exhibits a shell
and a bright central PWN, both seen in radio and X-rays. Interestingly, the
radio observations of the PWN show an extended blob of emission and a curious
narrow finger structure pointing towards the offset compact X-ray source
indicating a possible fast moving pulsar in the SNR and/or an asymmetric
passage of the reverse shock. We report here on the observations, for a total
of 45 hours, of the SNR G327.1-1.1 with the H.E.S.S. telescope array which
resulted in the detection of TeV gamma-ray emission in spatial coincidence with
the PWN.Comment: Proceeding of the 32nd ICRC, August 11-18 2011, Beijing, Chin
Rate-dependent morphology of Li2O2 growth in Li-O2 batteries
Compact solid discharge products enable energy storage devices with high
gravimetric and volumetric energy densities, but solid deposits on active
surfaces can disturb charge transport and induce mechanical stress. In this
Letter we develop a nanoscale continuum model for the growth of Li2O2 crystals
in lithium-oxygen batteries with organic electrolytes, based on a theory of
electrochemical non-equilibrium thermodynamics originally applied to Li-ion
batteries. As in the case of lithium insertion in phase-separating LiFePO4
nanoparticles, the theory predicts a transition from complex to uniform
morphologies of Li2O2 with increasing current. Discrete particle growth at low
discharge rates becomes suppressed at high rates, resulting in a film of
electronically insulating Li2O2 that limits cell performance. We predict that
the transition between these surface growth modes occurs at current densities
close to the exchange current density of the cathode reaction, consistent with
experimental observations.Comment: 8 pages, 6 fig
Pulsar wind nebulae in supernova remnants
A spherically symmetric model is presented for the interaction of a pulsar
wind with the associated supernova remnant. This results in a pulsar wind
nebula whose evolution is coupled to the evolution of the surrounding supernova
remnant. This evolution can be divided in three stages. The first stage is
characterised by a supersonic expansion of the pulsar wind nebula into the
freely expanding ejecta of the progenitor star. In the next stage the pulsar
wind nebula is not steady; the pulsar wind nebula oscillates between
contraction and expansion due to interaction with the reverse shock of the
supernova remnant: reverberations which propagate forward and backward in the
remnant. After the reverberations of the reverse shock have almost completely
vanished and the supernova remnant has relaxed to a Sedov solution, the
expansion of the pulsar wind nebula proceeds subsonically. In this paper we
present results from hydrodynamical simulations of a pulsar wind nebula through
all these stages in its evolution. The simulations were carried out with the
Versatile Advection Code.Comment: 10 pages, 9 figures, submitted to Astronomy and Astrophysic
H.E.S.S. observations of the Large Magellanic Cloud
The Large Magellanic Cloud (LMC) is a satellite galaxy of the Milky Way at a
distance of approximately 48 kpc. Despite its distance it harbours several
interesting targets for TeV gamma-ray observations. The composite supernova
remnant N 157B/PSR J05367-6910 was discovered by H.E.S.S. being an emitter of
very high energy (VHE) gamma-rays. It is the most distant pulsar wind nebula
ever detected in VHE gamma-rays. Another very exciting target is SN 1987A, the
remnant of the most recent supernova explosion that occurred in the
neighbourhood of the Milky Way. Models for Cosmic Ray acceleration in this
remnant predict gamma-ray emission at a level detectable by H.E.S.S. but this
has not been detected so far. Fermi/LAT discovered diffuse high energy (HE)
gamma-ray emission from the general direction of the massive star forming
region 30 Doradus but no clear evidence for emission from either N 157B or SN
1987A has been published. The part of the LMC containing these objects has been
observed regularly with the H.E.S.S. telescopes since 2003. With deep
observations carried out in 2010 a very good exposure of this part of the sky
has been obtained. The current status of the H.E.S.S. LMC observations is
reported along with new results on N 157B and SN 1987A.Comment: 4 pages, 3 figures, proceedings of the 32nd Internatioal Cosmic Ray
Conference, Beijing 201
- …
