290,624 research outputs found
Pyrite oxidation under initially neutral pH conditions and in the presence of Acidithiobacillus ferrooxidans and micromolar hydrogen peroxide
Hydrogen peroxide (H2O2) at a micromolar level played a role in the microbial surface oxidation of pyrite crystals under initially neutral pH. When the mineral-bacteria system
was cyclically exposed to 50 μM H2O2, the colonization of Acidithiobacillus ferrooxidans onto the mineral surface was markedly enhanced, as compared to the control(no added H2O2). This can be attributed to the effects of H2O2 on increasing the roughness of the mineral surfaces, as well as the acidity and Fe2+ concentration at the mineral-solution interfaces. All of these effects tended to create more favourable nanoto micro-scale environments in the mineral surfaces for the cell adsorption. However, higher H2O2 levels inhibited the attachment of cells onto the mineral surfaces, possibly due to the oxidative stress in the bacteria when they approached the mineral surfaces
where high levels of free radicals are present as a result of Fenton-like reactions. The more aggressive nature of H2O2 as an oxidant caused marked surface flaking of the
mineral surface. The XPS results suggest that H2O2 accelerated the oxidation of pyrite-S and consequently facilitated the overall corrosion cycle of pyrite surfaces. This was accompanied by pH drop in the solution in contact with the pyrite cubes
Scaling of Anisotropic Flows and Nuclear Equation of State in Intermediate Energy Heavy Ion Collisions
Elliptic flow () and hexadecupole flow () of light clusters have
been studied in details for 25 MeV/nucleon Kr + Sn at large
impact parameters by Quantum Molecular Dynamics model with different potential
parameters. Four parameter sets which include soft or hard equation of state
(EOS) with/without symmetry energy term are used. Both number-of-nucleon ()
scaling of the elliptic flow versus transverse momentum () and the scaling
of versus have been demonstrated for the light clusters
in all above calculation conditions. It was also found that the ratio of
keeps a constant of 1/2 which is independent of for all the
light fragments. By comparisons among different combinations of EOS and
symmetry potential term, the results show that the above scaling behaviors are
solid which do not depend the details of potential, while the strength of flows
is sensitive to EOS and symmetry potential term.Comment: 5 pages, 5 figure
A Remark on Soliton Equation of Mean Curvature Flow
In this short note, we consider self-similar immersions of the Graphic Mean Curvature Flow of higher co-dimension. We
show that the following is true: Let be
a graph solution to the soliton equation
Assume . Then there exists a
unique smooth function such that
and for any real number , where Comment: 6 page
Degenerate Metric Phase Boundaries
The structure of boundaries between degenerate and nondegenerate solutions of
Ashtekar's canonical reformulation of Einstein's equations is studied. Several
examples are given of such "phase boundaries" in which the metric is degenerate
on one side of a null hypersurface and non-degenerate on the other side. These
include portions of flat space, Schwarzschild, and plane wave solutions joined
to degenerate regions. In the last case, the wave collides with a planar phase
boundary and continues on with the same curvature but degenerate triad, while
the phase boundary continues in the opposite direction. We conjecture that
degenerate phase boundaries are always null.Comment: 16 pages, 2 figures; erratum included in separate file: errors in
section 4, degenerate phase boundary is null without imposing field equation
Energy-Dependent GRB Pulse Width due to the Curvature Effect and Intrinsic Band Spectrum
Previous studies have found that the width of gamma-ray burst (GRB) pulse is
energy dependent and that it decreases as a power-law function with increasing
photon energy. In this work we have investigated the relation between the
energy dependence of pulse and the so-called Band spectrum by using a sample
including 51 well-separated fast rise and exponential decay long-duration GRB
pulses observed by BATSE (Burst and Transient Source Experiment on the Compton
Gamma Ray Observatory). We first decompose these pulses into rise, and decay
phases and find the rise widths, and the decay widths also behavior as a
power-law function with photon energy. Then we investigate statistically the
relations between the three power-law indices of the rise, decay and total
width of pulse (denoted as , and , respectively)
and the three Band spectral parameters, high-energy index (),
low-energy index () and peak energy (). It is found that
(1) is strongly correlated with and but seems
uncorrelated with ; (2) is weakly correlated with the three
power-law indices and (3) does not show evident correlations with the
three power-law indices. We further investigate the origin of
and . We show that the curvature effect and the intrinsic Band
spectrum could naturally lead to the energy dependence of GRB pulse width and
also the and correlations. Our results
would hold so long as the shell emitting gamma rays has a curve surface and the
intrinsic spectrum is a Band spectrum or broken power law. The strong
correlation and inapparent correlations between
and three Band spectral parameters also suggest that the rise and decay phases
of GRB pulses have different origins.Comment: 29 pages, 9 figures, 4 tables. Accepted for publication in The
Astrophysical Journa
- …
