707 research outputs found

    Cluster dynamical mean-field study of the Hubbard model on a 3D frustrated hyperkagome lattice

    Full text link
    We study the Hubbard model on a geometrically-frustrated hyperkagome lattice by a cluster extension of the dynamical mean field theory. We calculate the temperature (TT) dependences of the specific heat (CC) and the spin-lattice relaxation time (T1T_1) in correlated metallic region. C/TC/T shows a peak at T=Tp1T=T_{p1} and rapidly decreases as T>0T->0. On the other hand, 1/T1T1/T_1T has a peak at a higher temperature Tp2T_{p2} than Tp1T_{p1}, and largely decreases below Tp2T_{p2}, followed by the Korringa law 1/T1proptoT1/T_1 propto T as T>0T->0. Both peak temperatures are suppressed and the peaks become sharper as electron correlation is increased. These behaviors originate from strong renormalization of the energy scales in the peculiar electronic structure in this frustrated system; a pseudo-gap like feature, the van-Hove singularity, and the flat band. The results are discussed in comparison with the experimental data in the hyperkagome material, Na4_4Ir3_3O8_8.Comment: 4 pages, 4 figures, Conference proceedings for Highly Frustrated Magnetism 200

    Superconductivity in Pr2Ba4Cu7O15-delta with metallic double chains

    Full text link
    We report superconductivity with Tc,onsetT_{c,onset}=\sim10K in Pr2_{2}Ba4_{4}Cu7_{7}O15δ_{15-\delta} compound possessing metallic double chains. A reduction treatment on as-sintered samples causes not only the enhanced metallic conduction but also the appearance of superconductivity accompanied by the c-axis elongation due to oxygen deficiency

    Nuclear spin-spin coupling in La_{2-x}Sr_{x}CuO_{4} studied by stimulated echo decay

    Full text link
    We have performed copper NQR experiments in high temperature superconductors YBa_{2}Cu_{4}O_{8}, YBa_{2}Cu_{3}O_{7}, and La_{2-x}Sr_{x}CuO_{4} (x=0.12 and 0.15), using the stimulated echo technique. The stimulated echo intensity is analyzed by a model that includes the spin-lattice relaxation process (T_ {1 }-process) and the fluctuating local field due to nuclear spin-spin coupling. The model gives quantitative account of the experimental results in Y-based compounds using the known values of 1/T_{1} and 1/T_{2G}, the gaussian decay rate of the spin echo intensity. The same model applied to LSCO enables us to extract the value of T_{2G}. Our results indicate that T_{1}T/T_{2G} is independent of temperature, implying that the dynamic exponent is one in La_{2-x}Sr_{x}CuO_{4}.Comment: 14 pages, 11 fugures, The bibliography field is correcte

    Nonbonding oxygen holes and spinless scenario of magnetic response in doped cuprates

    Get PDF
    Both theoretical considerations and experimental data point to a more complicated nature of the valence hole states in doped cuprates than it is predicted by Zhang-Rice model. Actually, we deal with a competition of conventional hybrid Cu 3d-O 2p b1gdx2y2b_{1g}\propto d_{x^2 -y^2} state and purely oxygen nonbonding state with eux,ypx,ye_{u}x,y \propto p_{x,y} symmetry. The latter reveals a non-quenched Ising-like orbital moment that gives rise to a novel spinless purely oxygen scenario of the magnetic response in doped cuprates with the oxygen localized orbital magnetic moments of the order of tenths of Bohr magneton. We consider the mechanism of 63,65{}^{63,65}Cu-O 2p transferred orbital hyperfine interactions due to the mixing of the oxygen O 2p orbitals with Cu 3p semicore orbitals. Quantitative estimates point to a large magnitude of the respective contributions both to local field and electric field gradient, and their correlated character.Comment: 7 pages, 1 figur

    Spin dynamics and antiferromagnetic order in PrBa2Cu4O8 studied by Cu nuclear respnance

    Full text link
    Results of the nuclear resonance experiments for the planar Cu sites in PrBa2Cu4O8 are presented. The NMR spectrum at 1.5 K in zero magnetic field revealed an internal field of 6.1 T, providing evidence for an antiferromagnetic order of the planar Cu spins. This confirms that the CuO2 planes are insulating, therefore, the metallic conduction in this material is entirely due to the one-dimensional zigzag Cu2O2 chains. The results of the spin-lattice relaxation rates measured by zero field NQR above 245 K in the paramagnetic state are explained by the theory for a Heisenberg model on a square lattice.Comment: 4 pages, 2 figure

    Pseudogap Induced Antiferromagnetic Spin Correlation in High-Temperature Superconductors

    Full text link
    The pseudogap phenomena observed on cuprate high temperature superconductors are investigated based on the exact diagonalization method on the finite cluster t-J model. The results show the presence of the gap-like behavior in the temperature dependence of various magnetic properties; the NMR relaxation rate, the neutron scattering intensity and the static susceptibility. The calculated spin correlation function indicates that the pseudogap behavior arises associated with the development of the antiferromagnetic spin correlation with decreasing the temperature. The numerical results are presented to clarify the model parameter dependence, that covers the realistic experimental situation. The effect of the next-nearest neighbor hopping tt' is also studied.Comment: 7 pages, Revtex, with 10 eps figures, to appear in J. Phys. Soc. Jpn. (Vol. 70, No. 1

    How does interchange affect passengers' route choices in urban rail transit? - a case study of the Shanghai Metro

    Get PDF
    Interchange provides more flexibility in route choice, a key travel behaviour in urban rail transit, but its influence is usually simplified. This paper investigates how interchange affects route choice with passenger perception considered. At single-interchange level, perceived interchange time was proposed and modelled under three resolutions to capture passenger perception and its sensitivity. At route level, the influence of interchange was modeled by first comparing eight quantifications of interchange. Mixed logit models with the best interchange proxy were further developed to address the correlation among alternative routes and reveal the potential taste variations among passengers. Results based on Shanghai Metro data showed perceived interchange time, including passenger perception and interchange environment, better represents the influence of interchange in route choice, meanwhile the weights of interchanges on one route rise sequentially and non-linearly. The results can improve route choice prediction in demand modelling and route recommendation in advanced traveller information systems

    The Gonium pectorale genome demonstrates co-option of cell cycle regulation during the evolution of multicellularity

    Get PDF
    Citation: Hanschen, E. R., Marriage, T. N., Ferris, P. J., Hamaji, T., Toyoda, A., Fujiyama, A., . . . Olson, B. (2016). The Gonium pectorale genome demonstrates co-option of cell cycle regulation during the evolution of multicellularity. Nature Communications, 7, 10. doi:10.1038/ncomms11370Additional Authors: Anderson, J.;Bakaric, R.;Luria, V.;Karger, A.;Kirschner, M. W.;Durand, P. M.;Michod, R. E.;Nozaki, H.The transition to multicellularity has occurred numerous times in all domains of life, yet its initial steps are poorly understood. The volvocine green algae are a tractable system for understanding the genetic basis of multicellularity including the initial formation of cooperative cell groups. Here we report the genome sequence of the undifferentiated colonial alga, Gonium pectorale, where group formation evolved by co-option of the retinoblastoma cell cycle regulatory pathway. Significantly, expression of the Gonium retinoblastoma cell cycle regulator in unicellular Chlamydomonas causes it to become colonial. The presence of these changes in undifferentiated Gonium indicates extensive group-level adaptation during the initial step in the evolution of multicellularity. These results emphasize an early and formative step in the evolution of multicellularity, the evolution of cell cycle regulation, one that may shed light on the evolutionary history of other multicellular innovations and evolutionary transitions

    Direct Evidence for Dominant Bond-directional Interactions in a Honeycomb Lattice Iridate Na2IrO3

    Get PDF
    Heisenberg interactions are ubiquitous in magnetic materials and have been prevailing in modeling and designing quantum magnets. Bond-directional interactions offer a novel alternative to Heisenberg exchange and provide the building blocks of the Kitaev model, which has a quantum spin liquid (QSL) as its exact ground state. Honeycomb iridates, A2IrO3 (A=Na,Li), offer potential realizations of the Kitaev model, and their reported magnetic behaviors may be interpreted within the Kitaev framework. However, the extent of their relevance to the Kitaev model remains unclear, as evidence for bond-directional interactions remains indirect or conjectural. Here, we present direct evidence for dominant bond-directional interactions in antiferromagnetic Na2IrO3 and show that they lead to strong magnetic frustration. Diffuse magnetic x-ray scattering reveals broken spin-rotational symmetry even above Neel temperature, with the three spin components exhibiting nano-scale correlations along distinct crystallographic directions. This spin-space and real-space entanglement directly manifests the bond-directional interactions, provides the missing link to Kitaev physics in honeycomb iridates, and establishes a new design strategy toward frustrated magnetism.Comment: Nature Physics, accepted (2015

    Anomalous behaviors of the charge and spin degrees of freedom in the CuO double chains of PrBa2_2Cu4_4O8_8

    Full text link
    The density-matrix renormalization-group method is used to study the electronic states of a two-chain Hubbard model for CuO double chains of PrBa2_2Cu4_4O8_8. We show that the model at quarter filling has the charge ordered phases with stripe-type and in-line--type patterns in the parameter space, and in-between, there appears a wide region of vanishing charge gap; the latter phase is characteristic of either Tomonaga-Luttinger liquid or a metallic state with a spin gap. We argue that the low-energy electronic state of the CuO double chains of PrBa2_2Cu4_4O8_8 should be in the metallic state with a possibly small spin gap.Comment: REVTEX 4, 10 pages, 9 figures; submitted to PR
    corecore