2,615 research outputs found
Depletion of nonlinearity in magnetohydrodynamic turbulence: insights from analysis and simulations
Depletion of Nonlinearity in Magnetohydrodynamic Turbulence: Insights from Analysis and Simulations
We build on recent developments in the study of fluid turbulence [Gibbon
\textit{et al.} Nonlinearity 27, 2605 (2014)] to define suitably scaled,
order- moments, , of , where
and are, respectively, the vorticity and current density in
three-dimensional magnetohydrodynamics (MHD). We show by mathematical analysis,
for unit magnetic Prandtl number , how these moments can be used to
identify three possible regimes for solutions of the MHD equations; these
regimes are specified by inequalities for and . We then
compare our mathematical results with those from our direct numerical
simulations (DNSs) and thus demonstrate that 3D MHD turbulence is like its
fluid-turbulence counterpart insofar as all solutions, which we have
investigated, remain in \textit{only one of these regimes}; this regime has
depleted nonlinearity. We examine the implications of our results for the
exponents that characterize the power-law dependences of the energy
spectra on the wave number , in the inertial range of
scales. We also comment on (a) the generalization of our results to the case
and (b) the relation between and the order- moments
of gradients of hydrodynamic fields, which are used in characterizing
intermittency in turbulent flows.Comment: 14 pages, 3 figure
Exact results and scaling properties of small-world networks
We study the distribution function for minimal paths in small-world networks.
Using properties of this distribution function, we derive analytic results
which greatly simplify the numerical calculation of the average minimal
distance, , and its variance, . We also discuss the
scaling properties of the distribution function. Finally, we study the limit of
large system sizes and obtain some analytic results.Comment: RevTeX, 4 pages, 5 figures included. Minor corrections and addition
Ekpyrosis and inflationary dynamics in heavy ion collisions: the role of quantum fluctuations
We summarize recent significant progress in the development of a
first-principles formalism to describe the formation and evolution of matter in
very high energy heavy ion collisions. The key role of quantum fluctuations
both before and after a collision is emphasized. Systematic computations are
now feasible to address early time dynamics essential to quantifying properties
of strongly interacting quark-gluon matter.Comment: Talk by R.V. at Quark Matter 2011, Annecy, France, May 23-28, 2011.
LaTex, 4 pages; v2, final version to appear in J. Phys.
Towards Reliable Automatic Protein Structure Alignment
A variety of methods have been proposed for structure similarity calculation,
which are called structure alignment or superposition. One major shortcoming in
current structure alignment algorithms is in their inherent design, which is
based on local structure similarity. In this work, we propose a method to
incorporate global information in obtaining optimal alignments and
superpositions. Our method, when applied to optimizing the TM-score and the GDT
score, produces significantly better results than current state-of-the-art
protein structure alignment tools. Specifically, if the highest TM-score found
by TMalign is lower than (0.6) and the highest TM-score found by one of the
tested methods is higher than (0.5), there is a probability of (42%) that
TMalign failed to find TM-scores higher than (0.5), while the same probability
is reduced to (2%) if our method is used. This could significantly improve the
accuracy of fold detection if the cutoff TM-score of (0.5) is used.
In addition, existing structure alignment algorithms focus on structure
similarity alone and simply ignore other important similarities, such as
sequence similarity. Our approach has the capacity to incorporate multiple
similarities into the scoring function. Results show that sequence similarity
aids in finding high quality protein structure alignments that are more
consistent with eye-examined alignments in HOMSTRAD. Even when structure
similarity itself fails to find alignments with any consistency with
eye-examined alignments, our method remains capable of finding alignments
highly similar to, or even identical to, eye-examined alignments.Comment: Peer-reviewed and presented as part of the 13th Workshop on
Algorithms in Bioinformatics (WABI2013
Turbulence and Multiscaling in the Randomly Forced Navier Stokes Equation
We present an extensive pseudospectral study of the randomly forced
Navier-Stokes equation (RFNSE) stirred by a stochastic force with zero mean and
a variance , where is the wavevector and the dimension . We present the first evidence for multiscaling of velocity structure
functions in this model for . We extract the multiscaling exponent
ratios by using extended self similarity (ESS), examine their
dependence on , and show that, if , they are in agreement with those
obtained for the deterministically forced Navier-Stokes equation (NSE). We
also show that well-defined vortex filaments, which appear clearly in studies
of the NSE, are absent in the RFNSE.Comment: 4 pages (revtex), 6 figures (postscript
Wetting of a symmetrical binary fluid mixture on a wall
We study the wetting behaviour of a symmetrical binary fluid below the
demixing temperature at a non-selective attractive wall. Although it demixes in
the bulk, a sufficiently thin liquid film remains mixed. On approaching
liquid/vapour coexistence, however, the thickness of the liquid film increases
and it may demix and then wet the substrate. We show that the wetting
properties are determined by an interplay of the two length scales related to
the density and the composition fluctuations. The problem is analysed within
the framework of a generic two component Ginzburg-Landau functional
(appropriate for systems with short-ranged interactions). This functional is
minimized both numerically and analytically within a piecewise parabolic
potential approximation. A number of novel surface transitions are found,
including first order demixing and prewetting, continuous demixing, a
tricritical point connecting the two regimes, or a critical end point beyond
which the prewetting line separates a strongly and a weakly demixed film. Our
results are supported by detailed Monte Carlo simulations of a symmetrical
binary Lennard-Jones fluid at an attractive wall.Comment: submitted to Phys. Rev.
Walks on Apollonian networks
We carry out comparative studies of random walks on deterministic Apollonian
networks (DANs) and random Apollonian networks (RANs). We perform computer
simulations for the mean first passage time, the average return time, the
mean-square displacement, and the network coverage for unrestricted random
walk. The diffusions both on DANs and RANs are proved to be sublinear. The
search efficiency for walks with various strategies and the influence of the
topology of underlying networks on the dynamics of walks are discussed.
Contrary to one's intuition, it is shown that the self-avoiding random walk,
which has been verified as an optimal strategy for searching on scale-free and
small-world networks, is not the best strategy for the DAN in the thermodynamic
limit.Comment: 5 pages, 4 figure
Untying a nanoscale knotted polymer structure to linear chains for efficient gene delivery in vitro and to the brain
The purpose of this study was to develop a platform transfection technology, for applications in the brain, which could transfect astrocytes without requiring cell specific functionalization and without the common cause of toxicity through high charge density. Here we show that a simple and scalable preparation technique can be used to produce a “knot” structured cationic polymer, where single growing chains can crosslink together via disulphide intramolecular crosslinks (internal cyclizations). This well-defined knot structure can thus “untie” under reducing conditions, showing a more favorable transfection profile for astrocytes compared to 25 kDa-PEI (48-fold), SuperFect® (39-fold) and Lipofectamine®2000 (18-fold) whilst maintaining neural cell viability at over 80% after four days of culture. The high transfection/lack of toxicity of this knot structured polymer in vitro, combined with its ability to mediate luciferase transgene expression in the adult rat brain, demonstrates its use as a platform transfection technology which should be investigated further for neurodegenerative disease therapies
Magnetic structures and reorientation transitions in noncentrosymmetric uniaxial antiferromagnets
A phenomenological theory of magnetic states in noncentrosymmetric tetragonal
antiferromagnets is developed, which has to include homogeneous and
inhomogeneous terms (Lifshitz-invariants) derived from Dzyaloshinskii-Moriya
couplings. Magnetic properties of this class of antiferromagnets with low
crystal symmetry are discussed in relation to its first known members, the
recently detected compounds Ba2CuGe2O7 and K2V3O8. Crystallographic symmetry
and magnetic ordering in these systems allow the simultaneous occurrence of
chiral inhomogeneous magnetic structures and weak ferromagnetism. New types of
incommensurate magnetic structures are possible, namely, chiral helices with
rotation of staggered magnetization and oscillations of the total
magnetization. Field-induced reorientation transitions into modulated states
have been studied and corresponding phase diagrams are constructed. Structures
of magnetic defects (domain-walls and vortices) are discussed. In particular,
vortices, i.e. localized non-singular line defects, are stabilized by the
inhomogeneous Dzyaloshinskii-Moriya interactions in uniaxial noncentrosymmetric
antiferromagnets.Comment: 18 pages RevTeX4, 13 figure
- …
