29 research outputs found

    METHOD DEVELOPMENT AND VALIDATION OF TIVOZANIB BY USING RP-HPLC IN BULK AND PHARMACEUTICAL DOSAGE FORM

    Get PDF
    Objective: The current investigation was pointed at developing and progressively validating novel, simple, responsive and stable RP-HPLC method for the measurement of active pharmaceutical ingredient of Tivozanib. Methods: A simple, selective, validated and well-defined stability that shows isocratic RP-HPLC methodology for the quantitative determination of Tivozanib. The chromatographic strategy utilized X-bridge phenyl column of dimensions 150x4.6 mm, 3.5 micron, using isocratic elution with a mobile phase of acetonitrile and 0.1 percent formic acid (50:50). A flow rate of 1 ml/min and a detector wavelength of 216 nm utilizing the PDA detector were given in the instrumental settings. Validation of the proposed method was carried out according to an international conference on harmonization (ICH) guidelines. Results: LOD and LOQ for the two active ingredients were established with respect to test concentration. The calibration charts plotted were linear with a regression coefficient of R2>0.999, means the linearity was within the limit. Recovery, specificity, linearity, accuracy, robustness, ruggedness were determined as a part of method validation and the results were found to be within the acceptable range. Conclusion: The proposed method to be fast, simple, feasible and affordable in assay condition. During stability tests, it can be used for routine analysis of the selected drugs

    METHOD DEVELOPMENT AND VALIDATION OF TIVOZANIB BY USING RP-HPLC IN BULK AND PHARMACEUTICAL DOSAGE FORM

    No full text
    Objective: The current investigation was pointed at developing and progressively validating novel, simple, responsive and stable RP-HPLC method for the measurement of active pharmaceutical ingredient of Tivozanib. Methods: A simple, selective, validated and well-defined stability that shows isocratic RP-HPLC methodology for the quantitative determination of Tivozanib. The chromatographic strategy utilized X-bridge phenyl column of dimensions 150x4.6 mm, 3.5 micron, using isocratic elution with a mobile phase of acetonitrile and 0.1 percent formic acid (50:50). A flow rate of 1 ml/min and a detector wavelength of 216 nm utilizing the PDA detector were given in the instrumental settings. Validation of the proposed method was carried out according to an international conference on harmonization (ICH) guidelines. Results: LOD and LOQ for the two active ingredients were established with respect to test concentration. The calibration charts plotted were linear with a regression coefficient of R2&gt;0.999, means the linearity was within the limit. Recovery, specificity, linearity, accuracy, robustness, ruggedness were determined as a part of method validation and the results were found to be within the acceptable range. Conclusion: The proposed method to be fast, simple, feasible and affordable in assay condition. During stability tests, it can be used for routine analysis of the selected drugs.</jats:p

    Removal of Methylene Blue from aqueous solution by activated carbon of <i>Vigna mungo L </i> and <i> Paspalum scrobiculatum</i>: Equilibrium, kinetics and thermodynamic studies.

    Get PDF
    134-144The adsorption capacity of the activated carbons of the agricultural waste materials of Vigna mungo L (Black gram husk - ACBGH) and Paspalum scrobiculatum (Varagu millet Husk - ACVMH) have been explored for the removal of Methylene Blue (MB) from water and was proved to be an efficient adsorbent. The morphology and chemical structure of the adsorbents have been investigated by using Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Brunauer Emmett Teller (BET). Adsorption studies are conducted on a batch process, to study the effects of contact time, initial concentration, temperature and pH. Equilibrium data has been analysed using Langmuir, Freundlich and Dubinin-Radushkevich isotherm models and the monolayer adsorption capacity of the adsorbents are calculated. Kinetic data has been studied using pseudo-first and pseudo-second order kinetic models. The data fits well with the Langmuir model, with a maximum adsorption capacity of 198.40 mg g-1 and 166.30 mg g-1 for ACBGH and ACVMH respectively. The pseudo-second-order kinetics is found to be the best for the adsorption of MB by the adsorbents with good correlation. Thermodynamic studies show that the adsorption is spontaneous, endothermic and entropy controlled. The desorption studies suggest that chemisorptions may be the major mode of adsorption

    Simulating Turbulence and Mixing in Supersonic Combustors Using Hybrid RANS/LES

    No full text

    Preliminary Aero-thermal Structural Simulation

    No full text
    corecore