2,071,903 research outputs found
Non-Abrikosov Vortex and Topological Knot in Two-gap Superconductor
We establish the existence of topologically stable knot in two-gap
superconductor whose topology is fixed by the Chern-Simon index of
the electromagnetic potential. We present a helical magnetic vortex solution in
Ginzburg-Landau theory of two-gap superconductor which has a non-vanishing
condensate at the core, and identify the knot as a twisted magnetic vortex ring
made of the helical vortex. We discuss how the knot can be constructed in the
recent two-gap superconductor.Comment: 4 pages, 3 figure
Josephson effects in one-dimensional supersolids
We demonstrate that superflow past an obstacle is possible in a solid phase
in the one-dimensional Gross-Pitaevskii equation with a finite-range two-body
interaction. The phenomenon we find is analogous to the DC Josephson effect in
superconductors and we deduce the "Josephson relation" between the current and
phase difference of the condensates separated by the obstacle. We also discuss
persistent current and nonclassical rotational inertia in annular container
with a penetrable potential barrier. The phase diagram in the plane of the
current and the interaction strength is given. Our result provides a simple
theoretical example of supersolidity in the presence of an obstacle.Comment: 9 pages, 9 figure
|V_ub| and |V_cb|, Charm Counting and Lifetime Differences in Inclusive Bottom Hadron Decays
Inclusive bottom hadron decays are analyzed based on the heavy quark
effective field theory (HQEFT). Special attentions in this paper are paid to
the b\to u transitions and nonspectator effects. As a consequence, the CKM
quark mixing matrix elements |V_ub| and |V_cb| are reliably extracted from the
inclusive semileptonic decays B\to X_u e \nu and B\to X_c e \nu. Various
observables, such as the semileptonic branch ratio B_SL, the lifetime
differences among B^-, B^0, B_s and \Lambda_b hadrons, the charm counting n_c,
are predicted and found to be consistent with the present experimental data.Comment: 20 pages, Revtex, 4 figures and 2 table
Inversion doublets of reflection-asymmetric clustering in 28Si and their isoscalar monopole and dipole transitions
[Background] Various cluster states of astrophysical interest are expected to
exist in the excited states of . However, they have not been
identified firmly, because of the experimental and theoretical difficulties.
[Purpose] To establish the Mg+, O+C and
Ne+2 cluster bands, we theoretically search for the
negative-parity cluster bands that are paired with the positive-parity bands to
constitute the inversion doublets. We also offer the isoscalar monopole and
dipole transitions as a promising probe for the clustering. We numerically show
that these transition strengths from the ground state to the cluster states are
very enhanced. [Method] The antisymmetrized molecular dynamics with Gogny D1S
effective interaction is employed to calculate the excited states of . The isoscalar monopole and dipole transition strengths are directly
evaluated from wave functions of the ground and excited states. [Results]
Negative-parity bands having Mg+ and O+C cluster
configurations are obtained in addition to the newly calculated
Ne+2 cluster bands. All of them are paired with the
corresponding positive-parity bands to constitute the inversion doublets with
various cluster configurations. The calculation show that the band-head of the
Mg+ and Ne+2 cluster bands are strongly excited
by the isoscalar monopole and dipole transitions. [Conclusions] The present
calculation suggests the existence of the inversion doublets with the
Mg+, O+C and Ne+2
configurations.Because of the enhanced transition strengths, we offer the
isoscalar monopole and dipole transitions as good probe for the
Mg+ and Ne+2 cluster bands.Comment: 28 pages, 8 figure
Nonequilibrium chiral dynamics by the time dependent variational approach with squeezed states
We investigate the inhomogeneous chiral dynamics of the O(4) linear sigma
model in 1+1 dimensions using the time dependent variational approach in the
space spanned by the squeezed states. We compare two cases, with and without
the Gaussian approximation for the Green's functions. We show that mode-mode
correlation plays a decisive role in the out-of-equilibrium quantum dynamics of
domain formation and squeezing of states.Comment: 5 pages, 4 figures. RevTex, version to appear in Phys. Rev. C. Rapid
Communicatio
Performance testing of lidar receivers
In addition to the considerations about the different types of noise sources, dynamic range, and linearity of a lidar receiver, one requires information about the pulse shape retaining capabilities of the receiver. For this purpose, relatively precise information about the height resolution as well as the recovery time of the receiver, due both to large transients and to fast changes in the received signal, is required. As more and more analog receivers using fast analog to digital converters and transient recorders will be used in the future lidar systems, methods to test these devices are essential. The method proposed for this purpose is shown. Tests were carried out using LCW-10, LT-20, and FTVR-2 as optical parts of the optical pulse generator circuits. A commercial optical receiver, LNOR, and a transient recorder, VK 220-4, were parts of the receiver system
- …
