185,477 research outputs found
Development of a novel virtual coordinate measuring machine
Existing VCMMs (virtual coordinate measuring machine) have been mainly developed to either simulate the measurement process hence enabling the off-line programming, or to perform error analysis and uncertainty evaluation. Their capability and performance could be greatly improved if there is a complete solution to cover the whole process and provide an integrated environment. The aim of this study is to develop such a VCMM that not only supports measurement process simulation, but also performs uncertainty evaluation. It makes use of virtual reality techniques to provide an accurate model of a physical CMM, together with uncertainty evaluation. An interface is also provided to communicate with CMM controller, allowing the measuring programs generated and simulated in the VCMM to be executed or tested on the physical CMM afterwards. This paper discusses the proposal of a novel VCMM design and the preliminary results
Effective models for gapped phases of strongly correlated quantum lattice models
We present a robust scheme to derive effective models non-perturbatively for
quantum lattice models when at least one degree of freedom is gapped. A
combination of graph theory and the method of continuous unitary
transformations (gCUTs) is shown to efficiently capture all zero-temperature
fluctuations in a controlled spatial range. The gCUT can be used either for
effective quasi-particle descriptions or for effective low-energy descriptions
in case of infinitely degenerate subspaces. We illustrate the method for 1d and
2d lattice models yielding convincing results in the thermodynamic limit. We
find that the recently discovered spin liquid in the Hubbard model on the
honeycomb lattice lies outside the perturbative strong-coupling regime. Various
extensions and perspectives of the gCUT are discussed.Comment: 6 pages, 5 figures, extended discussion on J2/J1 for the honeycomb
Hubbard model and on the properties of different generators for the
continuous unitary transformatio
Applying semantic web services to enterprise web
Enterprise Web provides a convenient, extendable, integrated platform for information sharing and knowledge management. However, it still has many drawbacks due to complexity and increasing information glut, as well as the heterogeneity of the information processed. Research in the field of Semantic Web Services has shown the possibility of adding higher level of semantic functionality onto the top of current Enterprise Web, enhancing usability and usefulness of resource, enabling decision support and automation. This paper aims to explore the use of Semantic Web Services in Enterprise Web and discuss the Semantic Web Services (SWS) approach for designing Enterprise Web applications. A Semantic Web Service oriented model is presented, in which resources and services are described by ontology, and processed through Semantic Web Service, allowing integrated administration, interoperability and automated reasoning
Cluster magnetic fields from active galactic nuclei
Active galactic nuclei (AGN) found at the centers of clusters of galaxies are
a possible source for weak cluster-wide magnetic fields. To evaluate this
scenario, we present 3D adaptive mesh refinement MHD simulations of a cool-core
cluster that include injection of kinetic, thermal, and magnetic energy via an
AGN-powered jet. Using the MHD solver in FLASH 2, we compare several
sub-resolution approaches that link the estimated accretion rate as measured on
the simulation mesh to the accretion rate onto the central black hole and the
resulting feedback. We examine the effects of magnetized outflows on the
accretion history of the black hole and discuss the ability of these models to
magnetize the cluster medium.Comment: 4 pages, 2 figures, submitted to conference proceedings "The
Monster's Fiery Breath: Feedback in Groups, Galaxies, and Clusters
Is flux rope a necessary condition for the progenitor of coronal mass ejections?
A magnetic flux rope structure is believed to exist in most coronal mass
ejections (CMEs). However, it has been long debated whether the flux rope
exists before eruption or is formed during eruption via magnetic reconnection.
The controversy has been continuing because of our lack of routine measurements
of the magnetic field in the pre-eruption structure, such as solar filaments.
However, recently an indirect method was proposed to infer the magnetic field
configuration based on the sign of helicity and the bearing direction of the
filament barbs. In this paper, we apply this method to two erupting filament
events, one on 2014 September 2 and the other on 2011 March 7, and find that
the first filament is supported by a magnetic flux rope and the second filament
is supported by a sheared arcade, i.e., the first one is an inverse-polarity
filament and the second one is a normal-polarity filament. With the
identification of the magnetic configurations in these two filaments, we stress
that a flux rope is not a necessary condition for the pre-CME structure.Comment: 26 pages, 11 figures, accepted for publication in Ap
The Influence of AGN Feedback on Galaxy Cluster Observables
Galaxy clusters are valuable cosmological probes. However, cluster mass
estimates rely on observable quantities that are affected by complicated
baryonic physics in the intracluster medium (ICM), including feedback from
active galactic nuclei (AGN). Cosmological simulations have started to include
AGN feedback using subgrid models. In order to make robust predictions, the
systematics of different implementations and parametrizations need to be
understood. We have developed an AGN subgrid model in FLASH that supports a few
different black hole accretion models and feedback models. We use this model to
study the effect of AGN on X-ray cluster observables and its dependence on
model variations.Comment: minor error corrected, to appear in proceedings of the conference
"The Monster's Fiery Breath: Feedback in Galaxies, Groups, and Clusters",
June 2009, Madison, Wisconsi
Adaptive control of a manipulator with a flexible link
An adaptive controller for a manipulator with one rigid link and one flexible link is presented. The performance and robustness of the controller are demonstrated by numerical simulation results. In the simulations, the manipulator moves in a gravitational field and a finite element model represents the flexible link
Riordan Paths and Derangements
Riordan paths are Motzkin paths without horizontal steps on the x-axis. We
establish a correspondence between Riordan paths and
-avoiding derangements. We also present a combinatorial proof
of a recurrence relation for the Riordan numbers in the spirit of the
Foata-Zeilberger proof of a recurrence relation on the Schr\"oder numbers.Comment: 9 pages, 2 figure
Fast quantum information transfer with superconducting flux qubits coupled to a cavity
We present a way to realize quantum information transfer with superconducting
flux qubits coupled to a cavity. Because only resonant qubit-cavity interaction
and resonant qubit-pulse interaction are applied, the information transfer can
be performed much faster, when compared with the previous proposals. This
proposal does not require adjustment of the qubit level spacings during the
operation. Moreover, neither uniformity in the device parameters nor exact
placement of qubits in the cavity is needed by this proposal.Comment: 6 pages, 3 figure
- …
