2,163 research outputs found
Large-Scale Structure Shocks at Low and High Redshifts
Cosmological simulations show that, at the present time, a substantial
fraction of the gas in the intergalactic medium (IGM) has been shock-heated to
T>10^5 K. Here we develop an analytic model to describe the fraction of
shocked, moderately overdense gas in the IGM. The model is an extension of the
Press & Schechter (1974) description for the mass function of halos: we assume
that large-scale structure shocks occur at a fixed overdensity during nonlinear
collapse. This in turn allows us to compute the fraction of gas at a given
redshift that has been shock-heated to a specified temperature. We show that,
if strong shocks occur at turnaround, our model provides a reasonable
description of the temperature distribution seen in cosmological simulations at
z~0, although it does overestimate the importance of weak shocks. We then apply
our model to shocks at high redshifts. We show that, before reionization, the
thermal energy of the IGM is dominated by large-scale structure shocks (rather
than virialized objects). These shocks can have a variety of effects, including
stripping ~10% of the gas from dark matter minihalos, accelerating cosmic rays,
and creating a diffuse radiation background from inverse Compton and cooling
radiation. This radiation background develops before the first stars form and
could have measurable effects on molecular hydrogen formation and the spin
temperature of the 21 cm transition of neutral hydrogen. Finally, we show that
shock-heating will also be directly detectable by redshifted 21 cm measurements
of the neutral IGM in the young universe.Comment: 12 pages, 8 figures, submitted to Ap
The Statistics of Density Peaks and the Column Density Distribution of the Lyman-Alpha Forest
We develop a method to calculate the column density distribution of the
Lyman-alpha forest for column densities in the range . The Zel'dovich approximation, with appropriate smoothing, is used to
compute the density and peculiar velocity fields. The effect of the latter on
absorption profiles is discussed and it is shown to have little effect on the
column density distribution. An approximation is introduced in which the column
density distribution is related to a statistic of density peaks (involving its
height and first and second derivatives along the line of sight) in real space.
We show that the slope of the column density distribution is determined by the
temperature-density relation as well as the power spectrum on scales . An expression relating the three is given. We
find very good agreement between the column density distribution obtained by
applying the Voigt-profile-fitting technique to the output of a full
hydrodynamic simulation and that obtained using our approximate method for a
test model. This formalism then is applied to study a group of CDM as well as
CHDM models. We show that the amplitude of the column density distribution
depends on the combination of parameters , which is not well-constrained by independent observations. The
slope of the distribution, on the other hand, can be used to distinguish
between different models: those with a smaller amplitude and a steeper slope of
the power spectrum on small scales give rise to steeper distributions, for the
range of column densities we study. Comparison with high resolution Keck data
is made.Comment: match accepted version; discussion added: the effect of the shape of
the power spectrum on the slope of the column density distributio
Phase diagram of bismuth in the extreme quantum limit
Elemental bismuth provides a rare opportunity to explore the fate of a
three-dimensional gas of highly mobile electrons confined to their lowest
Landau level. Coulomb interaction, neglected in the band picture, is expected
to become significant in this extreme quantum limit with poorly understood
consequences. Here, we present a study of the angular-dependent Nernst effect
in bismuth, which establishes the existence of ultraquantum field scales on top
of its complex single-particle spectrum. Each time a Landau level crosses the
Fermi level, the Nernst response sharply peaks. All such peaks are resolved by
the experiment and their complex angular-dependence is in very good agreement
with the theory. Beyond the quantum limit, we resolve additional Nernst peaks
signaling a cascade of additional Landau sub-levels caused by electron
interaction
Site-directed gene integration in transgenic zebrafish mediated by cre recombinase using a combination of mutant Lox sites
With current gene-transfer techniques in fish, insertion of DNA into the genome occurs randomly and in many instances at multiple sites. Associated position effects, copy number differences, and multiple gene interactions make gene expression experiments difficult to interpret and fish phenotype less predictable. To meet different fish engineering needs, we describe here a gene targeting model in zebrafish. At first, four target zebrafish lines, each harboring a single genomic lox71 target site, were generated by zebrafish transgenesis. The zygotes of transgenic zebrafish lines were coinjected with capped Cre mRNA and a knockin vector pZklox66RFP. Site-specific integration event happened from one target zebrafish line. In this line two integrant zebrafish were obtained from more than 80,000 targeted embryos (integrating efficiency about 10(-4) to 10(-5)) and confirmed to have a sole copy of the integrating DNA at the target genome site. Genomic polymerase chain reaction analysis and DNA sequencing verified the correct gene target events where lox71 and lox66 have accurately recombined into double mutant lox72 and wild-type loxP. Each integrant zebrafish chosen for analysis harbored the transgene rfp at the designated egfp concatenates. Although the Cre-mediated recombination is site specific, it is dependent on a randomly placed target site. That is, a genomic target cannot be preselected for integration based solely on its sequence. Conclusively, an rfp reporter gene was successfully inserted into the egfp target locus of zebrafish genome by Cre-lox-mediated recombination. This site-directed knockin system using the lox71/lox66 combination should be a promising gene-targeting platform serving various purposes in fish genetic engineering
Groups of diffeomorphisms and geometric loops of manifolds over ultra-normed fields
The article is devoted to the investigation of groups of diffeomorphisms and
loops of manifolds over ultra-metric fields of zero and positive
characteristics. Different types of topologies are considered on groups of
loops and diffeomorphisms relative to which they are generalized Lie groups or
topological groups. Among such topologies pairwise incomparable are found as
well. Topological perfectness of the diffeomorphism group relative to certain
topologies is studied. There are proved theorems about projective limit
decompositions of these groups and their compactifications for compact
manifolds. Moreover, an existence of one-parameter local subgroups of
diffeomorphism groups is investigated.Comment: Some corrections excluding misprints in the article were mad
Coupled dark energy: Towards a general description of the dynamics
In dark energy models of scalar-field coupled to a barotropic perfect fluid,
the existence of cosmological scaling solutions restricts the Lagrangian of the
field \vp to p=X g(Xe^{\lambda \vp}), where X=-g^{\mu\nu} \partial_\mu \vp
\partial_\nu \vp /2, is a constant and is an arbitrary function.
We derive general evolution equations in an autonomous form for this Lagrangian
and investigate the stability of fixed points for several different dark energy
models--(i) ordinary (phantom) field, (ii) dilatonic ghost condensate, and
(iii) (phantom) tachyon. We find the existence of scalar-field dominant fixed
points (\Omega_\vp=1) with an accelerated expansion in all models
irrespective of the presence of the coupling between dark energy and dark
matter. These fixed points are always classically stable for a phantom field,
implying that the universe is eventually dominated by the energy density of a
scalar field if phantom is responsible for dark energy. When the equation of
state w_\vp for the field \vp is larger than -1, we find that scaling
solutions are stable if the scalar-field dominant solution is unstable, and
vice versa. Therefore in this case the final attractor is either a scaling
solution with constant \Omega_\vp satisfying 0<\Omega_\vp<1 or a
scalar-field dominant solution with \Omega_\vp=1.Comment: 21 pages, 5 figures; minor clarifications added, typos corrected and
references updated; final version to appear in JCA
Structure and tanning properties of dialdehyde carboxymethyl cellulose: Effect of degree of substitution
Content:
Developing novel tanning agents from renewable biomass is regarded as an effective strategy for sustainable leather industry. In this study, a series of dialdehyde carboxymethyl cellulose (DCMC) were
prepared by periodate oxidation of carboxymethyl cellulose (CMC) with varying degrees of substitution (DS: 0.7, 0.9 and 1.2). The structural properties of DCMC were characterized. Size Exclusive
Chromatography measurements showed that CMC underwent severe degradation during periodate oxidation, resulting in the decline of weight-average molecular weight from 250,000 g/mol to around
13,000 g/mol. FT-IR analysis illustrated that aldehyde group was successfully introduced into DCMC. The aldehyde group content of DCMC decreased from 8.38 mmol/g to 2.95 mmol/g as the DS rose from 0.7 to 1.2. Interestingly, formaldehyde was found to be produced in DCMC, and its content was 159.4, 151.7 and 38.4 mg/L, respectively when the DS of CMC was 0.7, 0.9 and 1.2, respectively. Further analysis by HPLC found that fructose was formed during oxidative degradation, and was subsequently oxidized to generate formaldehyde. This was in accordance with the fact that higher DS resulted in lower formaldehyde content in DCMC. The whole reaction mechanism is still under investigation at the moment. Tanning trials showed that the shrinkage temperature and thickening rate of DCMC tanned leather decreased as the DS increased. This should be due to the difference in aldehyde content of DCMC. Leather tanned by DCMC-0.7 (DS of CMC was 0.7) had the highest shrinkage temperature of 81°C and thickening rate of 76%. It was noteworthy that the formaldehyde content in DCMC tanned leather was only 0.11-0.40 mg/kg even though DCMC contained a small amount of formaldehyde. In general, we hope the work on dialdehyde tanning agent derived from CMC could provide some essential data for the development of sustainable tanning material and process.
Take-Away:
1. Higher degree of substitution (DS) of CMC resulted in lower aldehyde group content of DCMC.
2. The formaldehyde content of DCMC was negatively correlated with DS.
3. The tanning performance of DCMC with lower DS was better
Using PIV to measure granular temperature in saturated unsteady polydisperse granular flows
The motion of debris flows, gravity-driven fast
moving mixtures of rock, soil and water can be interpreted
using the theories developed to describe the shearing motion
of highly concentrated granular fluid flows. Frictional, collisional
and viscous stress transfer between particles and
fluid characterizes the mechanics of debris flows. To quantify
the influence of collisional stress transfer, kinetic models
have been proposed. Collisions among particles result in random
fluctuations in their velocity that can be represented by
their granular temperature, T. In this paper particle image
velocimetry, PIV, is used to measure the instantaneous velocity
field found internally to a physical model of an unsteady
debris flow created by using “transparent soil”—i.e. a mixture
of graded glass particles and a refractively matched fluid.
The ensemble possesses bulk properties similar to that of
real soil-pore fluid mixtures, but has the advantage of giving
optical access to the interior of the flow by use of plane laser
induced fluorescence, PLIF. The relationship between PIV
patch size and particle size distribution for the front and tail
of the flows is examined in order to assess their influences
on the measured granular temperature of the system. We find
that while PIV can be used to ascertain values of granular
temperature in dense granular flows, due to increasing spatial
correlation with widening gradation, a technique proposed to
infer the true granular temperature may be limited to flows
of relatively uniform particle size or large bulk
- …
