2,262 research outputs found
Waveform-Controlled Terahertz Radiation from the Air Filament Produced by Few-Cycle Laser Pulses
Waveform-controlled Terahertz (THz) radiation is of great importance due to
its potential application in THz sensing and coherent control of quantum
systems. We demonstrated a novel scheme to generate waveform-controlled THz
radiation from air plasma produced when carrier-envelope-phase (CEP) stabilized
few-cycle laser pulses undergo filamentation in ambient air. We launched
CEP-stabilized 10 fs-long (~ 1.7 optical cycles) laser pulses at 1.8 {\mu}m
into air and found that the generated THz waveform can be controlled by varying
the filament length and the CEP of driving laser pulses. Calculations using the
photocurrent model and including the propagation effects well reproduce the
experimental results, and the origins of various phase shifts in the filament
are elucidated.Comment: 5pages, 5 figure
Efficacy of Functional Magnetic Stimulation in Neurogenic Bowel Dysfunction after Spinal Cord Injury
[[abstract]]Objective: The aims of this study were to assess the usefulness of functional magnetic stimulation in controlling neurogenic bowel dysfunction in spinal cord injured patients with supraconal and conal/caudal lesions, and to investigate the efficacy of this regimen with a 3-month follow-up.
Design: A longitudinal, prospective before-after trial.
Subjects: A total of 22 patients with chronic spinal cord injured and intractable neurogenic bowel dysfunction. They were divided into group 1 (supraconal lesion) and group 2 (conal/caudal lesion).
Methods: The colonic transit time assessment and Knowles-Eccersley-Scott Symptom Questionnaire were carried out for each patient before they received a 3-week functional magnetic stimulation protocol and on the day following the treatment.
Results and conclusion: Following functional magnetic stimulation, the mean colonic transit time for all patients decreased from 62.6 to 50.4 h (p < 0.001). The patients’ Knowles-Eccersley-Scott Symptom scores decreased from 24.5 to 19.2 points (p < 0.001). The colonic transit time decrement in both group 1 (p = 0.003) and group 2 (p = 0.043) showed significant differences, as did the Knowles-Eccersley-Scott Symptom score in both groups following stimulation and in the 3-month follow-up results (p < 0.01). The improvements in bowel function indicate that functional magnetic stimulation, featuring broad-spectrum application, can be incorporated successfully into other therapies as an optimal adjuvant treatment for neurogenic bowel dysfunction resulting from spinal cord injury.[[journaltype]]國外[[incitationindex]]SCI[[booktype]]紙本[[countrycodes]]SW
ワークショップ イゲンゴ カンキョウ ニ オイテ ニホン キンダイ ショウセツ ヲ ヨム ダザイ オサム オウゴン フウケイ ヲ レイ ニ チュウゴクゴ ハンタイジ
異言語環境において日本近代小説を読む 太宰治『黄金風景』を例
Healing LER using directed self assembly: treatment of EUVL resists with aqueous solutions of block copolymers
Overcoming the resolution-LER-sensitivity trade-off is a key challenge for the development of novel resists and processes that are able to achieve the ITRS targets for future lithography nodes. Here, we describe a process that treats lithographic patterns with aqueous solutions of block copolymers to facilitate a reduction in LER. A detailed understanding of parameters affecting adhesion and smoothing is gained by first investigating the behavior of the polymers on planar smooth and rough surfaces. Once healing was established in these model systems the methodology is tested on lithographically printed features where significant healing is observed, making this a promising technology for LER remediation
Density of kinks just after a quench in an overdamped system
A quench in an overdamped one dimensional model is studied by
analytical and numerical methods. For an infinite system or a finite system
with free boundary conditions, the density of kinks after the transition is
proportional to the eighth root of the rate of the quench. For a system with
periodic boundary conditions, it is proportional to the fourth root of the
rate. The critical exponent predicted in Zurek scenario is put in question.Comment: 4 pages in RevTex + 1 .ps fil
Recommended from our members
Electrolyte-Dependent Oxygen Evolution Reactions in Alkaline Media: Electrical Double Layer and Interfacial Interactions.
Traditional understanding of electrocatalytic reactions generally focuses on either covalent interactions between adsorbates and the reaction interface (i.e., electrical double layer, EDL) or electrostatic interactions between electrolyte ions. Here, our work provides valuable insights into interfacial structure and ionic interactions during alkaline oxygen evolution reaction (OER). The importance of inner-sphere OH- adsorption is demonstrated as the IrOx activity in 4.0 M KOH is 6.5 times higher than that in 0.1 M KOH. Adding NaNO3 as a supporting electrolyte, which is found to be inert for long-term stability, complicates the electrocatalytic reaction in a half cell. The nonspecially adsorbed Na+ in the outer compact interfacial layer is suggested to form a stronger noncovalent interaction with OH- through hydrogen bond than adsorbed K+, leading to the decrease of interfacial OH- mobility. This hypothesis highlights the importance of outer-sphere adsorption for the OER, which is generally recognized as a pure inner-sphere process. Meanwhile, based on our experimental observations, the pseudocapacitive behavior of solid-state redox might be more reliable in quantifying active sites for OER than that measured from the conventional EDL charging capacitive process. The interfacial oxygen transport is observed to improve with increasing electrolyte conductivity, ascribing to the increased accessible active sites. The durability results in a liquid alkaline electrolyzer which shows that adding NaNO3 into KOH solution leads to additional degradation of OER activity and long-term stability. These findings provide an improved understanding of the mechanistic details and structural motifs required for efficient and robust electrocatalysis
Recommended from our members
A Fungal Glycosphingolipid Directly Activates Natural Killer T Cells and Rapidly Induces Airways Disease
Aspergillus fumigatusis a saprophytic fungus that is ubiquitous in the environment and commonly associated with allergic sensitization and severe asthma in humans. Although A. fumigatus is recognized by multiple microbial pattern recognition receptors, we identified and synthesized an A. fumigatus glycosphingolipid, asperamide B, that directly activated invariant natural killer T (iNKT) cells in vitro in a CD1d-restricted, MyD88- and dectin-1-independent fashion. Moreover, asperamide B, when loaded into CD1d, directly stained, and was sufficient to activate, iNKT cells. In vivo, asperamide B rapidly induced airway hyperreactivity, a cardinal feature of asthma, by activating pulmonary iNKT cells in an IL-33-ST2-dependent fashion. Asperamide B is thus the first fungal glycolipid found to directly activate iNKT cells. These results extend the range of microorganisms that can be directly detected by iNKT cells to the Kingdom of Fungi, and may explain the effectiveness of A. fumigatus in causing severe chronic respiratory diseases in humans
Non-CA resists for 193nm immersions lithography: Effects of chemical structure on sensitivity
Initial studies are presented on the use of polysulfones as non-chemically amplified resists (non-CARs) for 193 nm immersion lithography. Polynorbornene sulfone films on silicon wafers have been irradiated with 193 nm photons in the absence of a photo-acid generator. Chemical contrast curves and contrast curves were obtained via spectroscopic ellipsometry and grazing angle - attenuated total reflectance FTIR spectroscopy. Results were consistent with previously reported mechanisms for the degradation of aliphatic polysulfones with ionizing radiation. It was shown that E0 values could be reduced significantly by using a post exposure bake step, which propagated depolymerization of the polymer. Initial patterning results down to 50 nm half pitch were demonstrated with EUV photons
A Mathematical Approach to Paint Production Process Optimization
As the global paint market steadily grows, finding the most effective processing model to increase production capacity will be the best way to enhance competitiveness. Therefore, this study proposes two production environments commonly used in the paint industry: build-to-order (BTO) and the variation of a configuration-to-order (CTO), called group production, to schedule paint production. Mixed-Integer Linear Program (MILP) was solved using genetic algorithms (GA) to analyze two production environments with various products, different set-up times, and different average demand for each product. The models determine the number of batches, the size and product of each batch, and the batch sequence such that the makespan is minimized. Several numerical instances are presented to analyze the proposed models. The experimental results show that BTO production completes products faster than group production when products are simple (low variety). However, group production is more applicable to manufacturing diverse products (high variety) and mass production (high volume). Finally, the number of colors has the most significant impact on the two models, followed by the number of product types, and finally the average demand
- …
