11 research outputs found
Variable-temperature, variable-field magnetic circular dichroism spectroscopic study of NifEN-bound precursor and “FeMoco”
NifEN plays a key role in the biosynthesis of the iron–molybdenum cofactor (FeMoco) of nitrogenase. A scaffold protein that hosts the conversion of a FeMoco precursor to a mature cofactor, NifEN can assume three conformations during the process of FeMoco maturation. One, designated ΔnifB NifEN, contains only two permanent [Fe4S4]-like clusters. The second, designated NifENPrecursor, contains the permanent clusters and a precursor form of FeMoco. The third, designated NifEN“FeMoco”, contains the permanent [Fe4S4]-like clusters and a fully complemented, “FeMoco”-like structure. Here, we report a variable-temperature, variable-field magnetic circular dichroism spectroscopic investigation of the electronic structure of the metal clusters in the three forms of dithionite-reduced NifEN. Our data indicate that the permanent [Fe4S4]-like clusters are structurally and electronically conserved in all three NifEN species and exhibit spectral features of classic [Fe4S4]+ clusters; however, they are present in a mixed spin state with a small contribution from the S > ½ spin state. Our results also suggest that both the precursor and “FeMoco” have a conserved Fe/S electronic structure that is similar to the electronic structure of FeMoco in the MoFe protein, and that the “FeMoco” in NifEN“FeMoco” exists, predominantly, in an S = 3/2 spin state with spectral parameters identical to those of FeMoco in the MoFe protein. These observations provide strong support to the outcome of our previous EPR and X-ray absorption spectroscopy/extended X-ray absorption fine structure analysis of the three NifEN species while providing significant new insights into the unique electronic properties of the precursor and “FeMoco” in NifEN
Magnetic Circular Dichroism Spectroscopy of Metalloproteins
Metals and metal clusters in proteins typically serve as important structural/functional motifs. Because of this reason, there is a wide range of techniques that specifically probe the structure and energy levels of metals in metalloproteins. One technique, magnetic circular dichroism (MCD) spectroscopy, is the focus of this chapter. MCD spectroscopy monitors the circular dichroism spectrum induced by a magnetic field and is an effective way of obtaining electronic and structural information of paramagnetic metal ions or clusters. The basic methodology of this technique is discussed along with examples of how MCD spectroscopy can be used to elucidate typical metal clusters in proteins. Special emphasis is placed on iron-sulfur (FeS) clusters
Relativistic Treatment of Spin-zero Particles Subjected to the Shifted Tietz-Wei Potential Model
An EPR and VTVH MCD spectroscopic investigation of the nitrogenase assembly protein NifB
Induced Fungal Resistance to Insect Grazing:Reciprocal Fitness Consequences and Fungal Gene Expression in the Drosophila-Aspergillus Model System
<p>Background: Fungi are key dietary resources for many animals. Fungi, in consequence, have evolved sophisticated physical and chemical defences for repelling and impairing fungivores. Expression of such defences may entail costs, requiring diversion of energy and nutrients away from fungal growth and reproduction. Inducible resistance that is mounted after attack by fungivores may allow fungi to circumvent the potential costs of defence when not needed. However, no information exists on whether fungi display inducible resistance. We combined organism and fungal gene expression approaches to investigate whether fungivory induces resistance in fungi.</p><p>Methodology/Principal Findings: Here we show that grazing by larval fruit flies, Drosophila melanogaster, induces resistance in the filamentous mould, Aspergillus nidulans, to subsequent feeding by larvae of the same insect. Larval grazing triggered the expression of various putative fungal resistance genes, including the secondary metabolite master regulator gene laeA. Compared to the severe pathological effects of wild type A. nidulans, which led to 100% insect mortality, larval feeding on a laeA loss-of-function mutant resulted in normal insect development. Whereas the wild type fungus recovered from larval grazing, larvae eradicated the chemically deficient mutant. In contrast, mutualistic dietary yeast, Saccharomyces cerevisiae, reached higher population densities when exposed to Drosophila larval feeding.</p><p>Conclusions/Significance: Our study presents novel evidence that insect grazing is capable of inducing resistance to further grazing in a filamentous fungus. This phenotypic shift in resistance to fungivory is accompanied by changes in the expression of genes involved in signal transduction, epigenetic regulation and secondary metabolite biosynthesis pathways. Depending on reciprocal insect-fungus fitness consequences, fungi may be selected for inducible resistance to maintain high fitness in fungivore-rich habitats. Induced fungal defence responses thus need to be included if we wish to have a complete conception of animal-fungus co-evolution, fungal gene regulation, and multitrophic interactions.</p>
Ecological mitigation of hillslope instability: ten key issues facing researchers and practitioners
Background Plants alter their environment in a number of ways. With correct management, plant communities can positively impact soil degradation processes such as surface erosion and shallow landslides. However, there are major gaps in our understanding of physical and ecological processes on hillslopes, and the application of research to restoration and engineering projects. Scope To identify the key issues of concern to researchers and practitioners involved in designing and implementing projects to mitigate hillslope instability, we organized a discussion during the Third International Conference on Soil Bio- and Eco-Engineering: The Use of Vegetation to Improve Slope Stability, Vancouver, Canada, July 2012. The facilitators asked delegates to answer three questions: (i) what do practitioners need from science? (ii) what are some of the key knowledge gaps? (iii) what ideas do you have for future collaborative research projects between practitioners and researchers? From this discussion, ten key issues were identified, considered as the kernel of future studies concerning the impact of vegetation on slope stability and erosion processes. Each issue is described and a discussion at the end of this paper addresses how we can augment the use of ecological engineering techniques for mitigating slope instability. Conclusions We show that through fundamental and applied research in related fields (e.g., soil formation and biogeochemistry, hydrology and microbial ecology), reliable data can be obtained for use by practitioners seeking adapted solutions for a given site. Through fieldwork, accessible databases, modelling and collaborative projects, awareness and acceptance of the use of plant material in slope restoration projects should increase significantly, particularly in the civil and geotechnical communities. (Résumé d'auteur
