47,080 research outputs found
Magnetic properties and Mott transition in the Hubbard model on the anisotropic triangular lattice
Magnetic phase diagram and Mott transition are studied in the Hubbard model
on the anisotropic triangular lattice at zero temperature and half-filling by
the variational cluster approximation, taking into account N\'eel, 120
N\'eel, and collinear orderings. Paramagnetic insulator (spin liquid) is
realized above the metallic phase around the isotropic point. In general, this
spin liquid state, continuously connected with the metallic state, changes to a
magnetic state as the on-site Coulomb repulsion increases, but it persists
up to large limit in a small window between 120 N\'eel and
collinear phases. For very large another spin liquid state, separated from
the metallic state by magnetic states, emerges around a narrow region where
both N\'eel and 120 N\'eel orderings are highly suppressed due to the
frustration and anisotropy. Implications for the
-(BEDT-TTF)Cu(CN) are discussed. As for the Mott
transition, the structure of the self-energy in the spectral representation is
studied in detail. As increases around the Mott transition point, single
dispersion evolves in the spectral weights of the self-energy which splits the
non-interacting band into the upper and lower Hubbard bands.Comment: 10 pages, 10 figures.
Monopole Excitation to Cluster States
We discuss strength of monopole excitation of the ground state to cluster
states in light nuclei. We clarify that the monopole excitation to cluster
states is in general strong as to be comparable with the single particle
strength and shares an appreciable portion of the sum rule value in spite of
large difference of the structure between the cluster state and the
shell-model-like ground state. We argue that the essential reasons of the large
strength are twofold. One is the fact that the clustering degree of freedom is
possessed even by simple shell model wave functions. The detailed feature of
this fact is described by the so-called Bayman-Bohr theorem which tells us that
SU(3) shell model wave function is equivalent to cluster model wave function.
The other is the ground state correlation induced by the activation of the
cluster degrees of freedom described by the Bayman-Bohr theorem. We
demonstrate, by deriving analytical expressions of monopole matrix elements,
that the order of magnitude of the monopole strength is governed by the first
reason, while the second reason plays a sufficient role in reproducing the data
up to the factor of magnitude of the monopole strength. Our explanation is made
by analysing three examples which are the monopole excitations to the
and states in O and the one to the state in C.
The present results imply that the measurement of strong monopole transitions
or excitations is in general very useful for the study of cluster states.Comment: 11 pages, 1 figure: revised versio
A new method of determining by the processes and \bar{B} \to K^* l \lbar
The differential decay width of the process is related to that of the process \bar{B} \rightarrow K^* l \lbar
by using -flavor symmetry and the heavy quark symmetry. The ratio of the
Kobayashi-Maskawa matrix elements is obtained in the zero recoil limit of
and , allowing a determination of .Comment: Latex file 9 pag
Chiral dynamics of -hyperons in the nuclear medium
Using SU(3) chiral perturbation theory we calculate the density-dependent
complex mean field of a -hyperon in
isospin-symmetric nuclear matter. The leading long-range -interaction arises from one-kaon exchange and from two-pion exchange with a
- or a -hyperon in the intermediate state. We find from the
conversion process at nuclear matter saturation density
fm an imaginary single-particle potential of
MeV, in fair agreement with existing empirical
determinations. The genuine long-range contributions from iterated (second
order) one-pion exchange with an intermediate - or -hyperon
sum up to a moderately repulsive real single-particle potential of
MeV. Recently measured ) inclusive spectra
related to -formation in heavy nuclei give evidence for a
-nucleus repulsion of similar size. Our results suggest that the net
effect of the short-range -interaction on the -nuclear mean
field could be small.Comment: 7 pages, 2 figures, published in: Phys. Rev. C 71, 068201 (2005
A Parametric Study of the Acoustic Mechanism for Core-Collapse Supernovae
We investigate the criterion for the acoustic mechanism to work successfully
in core-collapse supernovae. The acoustic mechanism is an alternative to the
neutrino-heating mechanism. It was proposed by Burrows et al., who claimed that
acoustic waves emitted by -mode oscillations in proto-neutron stars (PNS)
energize a stalled shock wave and eventually induce an explosion. Previous
works mainly studied to which extent the -modes are excited in the PNS. In
this paper, on the other hand, we investigate how strong the acoustic wave
needs to be if it were to revive a stalled shock wave. By adding the acoustic
power as a new axis, we draw a critical surface, an extension of the critical
curve commonly employed in the context of neutrino heating. We perform both 1D
and 2D parametrized simulations, in which we inject acoustic waves from the
inner boundary. In order to quantify the power of acoustic waves, we use the
extended Myers theory to take neutrino reactions into proper account. We find
for the 1D simulations that rather large acoustic powers are required to
relaunch the shock wave, since the additional heating provided by the secondary
shocks developed from acoustic waves is partially canceled by the neutrino
cooling that is also enhanced. In 2D, the required acoustic powers are
consistent with those of Burrows et al. Our results seem to imply, however,
that it is the sum of neutrino heating and acoustic powers that matters for
shock revival.Comment: 20 pages, 19 figures, accepted by Ap
Modified Laplace transformation method and its application to the anharmonic oscillator
We apply a recently proposed approximation method to the evaluation of
non-Gaussian integral and anharmonic oscillator. The method makes use of the
truncated perturbation series by recasting it via the modified Laplace integral
representation. The modification of the Laplace transformation is such that the
upper limit of integration is cut off and an extra term is added for the
compensation. For the non-Gaussian integral, we find that the perturbation
series can give accurate result and the obtained approximation converges to the
exact result in the limit ( denotes the order of perturbation
expansion). In the case of anharmonic oscillator, we show that several order
result yields good approximation of the ground state energy over the entire
parameter space. The large order aspect is also investigated for the anharmonic
oscillator.Comment: 26 pages including tables, Late
A Review on Experimental Studies of Second Language Speech Perception Training : Necessity of the Learning Paradigm in Speech Perception Studies
- …
