54,558 research outputs found
Stripe Formation in Fermionic Atoms on 2-D Optical Lattice inside a Box Trap: DMRG Studies for Repulsive Hubbard Model with Open Boundary Condition
We suggest that box shape trap enables to observe intrinsic properties of the
repulsive Hubbard model in a fixed doping in contrast to the harmonic trap
bringing about spatial variations of atom density profiles. In order to predict
atomic density profile under the box trap, we apply the directly-extended
density-matrix renormalization group method to 4-leg repulsive Hubbard model
with the open boundary condition. Consequently, we find that stripe formation
is universal in a low hole doping range and the stripe sensitively changes its
structure with variations of and the doping rate. A remarkable change is
that a stripe formed by a hole pair turns to one by a bi-hole pair when
entering a limited strong range. Furthermore, a systematic calculation
reveals that the Hubbard model shows a change from the stripe to the Friedel
like oscillation with increasing the doping rate
Neutron-scattering study of spin correlations in La1.94-xSrxCe0.06CuO4
We performed a neutron-scattering experiment to investigate the effect of
distortion of CuO2 planes on the low-energy spin correlation of
La1.94-xSrxCe0.06CuO4 (LSCCO). Due to the carrier-compensation effect by
co-doping of Sr and Ce, LSCCO has a smaller orthorhombic lattice distortion
compared to La2-xSrxCuO4 (LSCO) with comparable hole concentration p. A clear
gap with the edge-energy of 6~7 meV was observed in the energy spectrum of
local dynamical susceptibility c"(w) for both x=0.18 (p~0.14) and x=0.24
(p~0.20) samples as observed for optimally-doped LSCO (x=0.15~0.18). For the
x=0.14 (p~0.10) sample, in addition to the gap-like structure in c"(w) we
observed a low-energy component within the gap which develops below 2~3meV with
decreasing the energy. The low-energy component possibly coincides with the
static magnetic correlation observed in this sample. These results are
discussed from a view point of relationship between the stability of low-energy
spin fluctuations and the distortion of CuO2 planes.Comment: 4 pages, 3 figures, proceeding for SNS2007 conferenc
Equation of State of Supercooled Water from the Sedimentation Profile
To study the coexistence of two liquid states of water within one simulation
box, we implement an equilibrium sedimentation method--which involves applying
a gravitational field to the system and measuring/calculating the resulting
density profile in equilibrium. We simulate a system of particles interacting
via the ST2 potential, a model for water. We detect the coexistence of two
liquid phases at low temperature.Comment: 4 pages, 4 EPS figure
Distinguished self-adjoint extensions of Dirac operators via Hardy-Dirac inequalities
We prove some Hardy-Dirac inequalities with two different weights including
measure valued and Coulombic ones. Those inequalities are used to construct
distinguished self-adjoint extensions of Dirac operators for a class of
diagonal potentials related to the weights in the above mentioned inequalities.Comment: 16 page
R-Process Nucleosynthesis In Neutrino-Driven Winds From A Typical Neutron Star With M = 1.4 Msun
We study the effects of the outer boundary conditions in neutrino-driven
winds on the r-process nucleosynthesis. We perform numerical simulations of
hydrodynamics of neutrino-driven winds and nuclear reaction network
calculations of the r-process. As an outer boundary condition of hydrodynamic
calculations, we set a pressure upon the outermost layer of the wind, which is
approaching toward the shock wall. Varying the boundary pressure, we obtain
various asymptotic thermal temperature of expanding material in the
neutrino-driven winds for resulting nucleosynthesis. We find that the
asymptotic temperature slightly lower than those used in the previous studies
of the neutrino-driven winds can lead to a successful r-process abundance
pattern, which is in a reasonable agreement with the solar system r-process
abundance pattern even for the typical proto-neutron star mass Mns ~ 1.4 Msun.
A slightly lower asymptotic temperature reduces the charged particle reaction
rates and the resulting amount of seed elements and lead to a high
neutron-to-seed ratio for successful r-process. This is a new idea which is
different from the previous models of neutrino-driven winds from very massive
(Mns ~ 2.0 Msun) and compact (Rns ~ 10 km) neutron star to get a short
expansion time and a high entropy for a successful r-process abundance pattern.
Although such a large mass is sometimes criticized from observational facts on
a neutron star mass, we dissolve this criticism by reconsidering the boundary
condition of the wind. We also explore the relation between the boundary
condition and neutron star mass, which is related to the progenitor mass, for
successful r-process.Comment: 14 pages, 2 figure
Energy Functions in Box Ball Systems
The box ball system is studied in the crystal theory formulation. New
conserved quantities and the phase shift of the soliton scattering are obtained
by considering the energy function (or -function) in the combinatorial
-matrix.Comment: 15 pages, LaTeX2e: one paragraph replaced and reference added in
Introduction, a paragraph added in Section 2.5, remark 2) after Th 4.6 adde
Hydrogen-Bonded Liquids: Effects of Correlations of Orientational Degrees of Freedom
We improve a lattice model of water introduced by Sastry, Debenedetti,
Sciortino, and Stanley to give insight on experimental thermodynamic anomalies
in supercooled phase, taking into account the correlations between
intra-molecular orientational degrees of freedom. The original Sastry et al.
model including energetic, entropic and volumic effect of the
orientation-dependent hydrogen bonds (HBs), captures qualitatively the
experimental water behavior, but it ignores the geometrical correlation between
HBs. Our mean-field calculation shows that adding these correlations gives a
more water-like phase diagram than previously shown, with the appearance of a
solid phase and first-order liquid-solid and gas-solid phase transitions.
Further investigation is necessary to be able to use this model to characterize
the thermodynamic properties of the supercooled region.Comment: 7 pages latex, 3 figures EP
- …
