47,573 research outputs found

    Propagation of hydrodynamic interactions between particles in a compressible fluid

    Get PDF
    Hydrodynamic interactions are transmitted by viscous diffusion and sound propagation: the temporal evolution of hydrodynamic interactions by both mechanisms is studied by direct numerical simulation in this paper. The hydrodynamic interactions for a system of two particles in a fluid are estimated by the velocity correlation of the particles. In an incompressible fluid, hydrodynamic interactions propagate instantaneously at the infinite speed of sound, followed by the temporal evolution of viscous diffusion. On the other hand, in a compressible fluid, sound propagates at a finite speed, which affects the temporal evolution of the hydrodynamic interactions by the order of magnitude relation between the time scales of viscous diffusion and sound propagation. The hydrodynamic interactions are characterized by introducing the ratio of these time scales as an interactive compressibility factor.Comment: 12 pages, 8 figure

    Plastic deformation at surface during unlubricated sliding

    Get PDF
    The plastic deformation and wear of 304 stainless-steel surface slid against an aluminum oxide rider were observed by using a scanning electron microscope and an optical microscope. Experiments were conducted in a vacuum of 0.000001 Pa and in an environment of 0.0005 Pa chlorine gas at 25 C. The load was 500 grams and the sliding velocity was 0.5 centimeter per second. The deformed surface layer which accumulates and develops successively is left behind the rider, and step-shaped protuberances are developed even after single pass sliding under both environmental conditions. A fully developed surface layer is gradually torn off leaving a characteristic pattern. These observations result from both adhesion and an adhesive wear mechanism

    First-order quantum correction to the Larmor radiation from a moving charge in a spatially homogeneous time-dependent electric field

    Full text link
    First-order quantum correction to the Larmor radiation is investigated on the basis of the scalar QED on a homogeneous background of time-dependent electric field, which is a generalization of a recent work by Higuchi and Walker so as to be extended for an accelerated charged particle in a relativistic motion. We obtain a simple approximate formula for the quantum correction in the limit of the relativistic motion when the direction of the particle motion is parallel to that of the electric field.Comment: 12 pages, 2 figures, accepted for publication in Physical Review

    Dynamics of Quasi-ordered Structure in a Regio-regulated pi-Conjugated Polymer:Poly(4-methylthiazole-2,5-diyl)

    Full text link
    Dynamics of regio-regulated Poly(4-methylthiazole-2,5-diyl) [HH-P4MeTz] was inves tigated by solid-state 1H, 2D, 13C NMR spectroscopies, and differential scanning calorimetry(DSC) measurements. DSC, 2D quadrupolar echo NMR, 13C cross-polarization and magic-angle spinning(CPMAS) NMR, and 2D spin-echo(2DSE) CPMAS NMR spectroscopy suggest existence of a quasi-ordered phase in which backbone twists take place with weakened pi-stackings. Two-dimensional exchange 2D NMR(2DEX) detected slow dynamics with a rate of an order of 10^2Hz for the CD_3 group in d_3-HH-P4MeTz at 288K. The frequency dependence of proton longitudinal relaxation rate at 288K shows a omega^-1/2 dependence, which is due to the one-dimensional diffusion-like motion of backbone conformational modulation waves. The diffusion rate was estimated as 3+/-2 GHz, which was approximately 10^7 times larger than that estimated by 2DEX NMR measurements. These results suggest that there exists anomalous dispersion of modulation waves in HH-P4MeTz. The one-dimensional group velocity of the wave packet is responsible for the behavior of proton longitudinal relaxation time. On the other hand, the 2DEX NMR is sensitive to phase velocity of the nutation of methyl groups that is associated with backbone twists. From proton T_1 and T_2 measurements, the activation energy was estimated as 2.9 and 3.4 kcal/mol, respectively. These were in agreement with 3.0 kcal/mol determined by Moller-Plesset(MP2) molecular orbital(MO) calculation. We also performed chemical shielding calculation of the methyl-carbon in order to understand chemical shift tensor behavior, leading to the fact that a quasi-ordered phase coexist with the crystalline phase.Comment: 14 pages, 11 figures, to appear in Phys.Rev.

    Direct numerical simulation of dispersed particles in a compressible fluid

    Get PDF
    We present a direct numerical simulation method for investigating the dynamics of dispersed particles in a compressible solvent fluid. The validity of the simulation is examined by calculating the velocity relaxation of an impulsively forced spherical particle with a known analytical solution. The simulation also gives information about the fluid motion, which provides some insight into the particle motion. Fluctuations are also introduced by random stress, and the validity of this case is examined by comparing the calculation results with the fluctuation-dissipation theorem.Comment: 7 pages, 5 figure

    Dynamics of the excitations of a quantum dot in a microcavity

    Full text link
    We study the dynamics of a quantum dot embedded in a three-dimensional microcavity in the strong coupling regime in which the quantum dot exciton has an energy close to the frequency of a confined cavity mode. Under the continuous pumping of the system, confined electron and hole can recombine either by spontaneous emission through a leaky mode or by stimulated emission of a cavity mode that can escape from the cavity. The numerical integration of a master equation including all these effects gives the dynamics of the density matrix. By using the quantum regression theorem, we compute the first and second order coherence functions required to calculate the photon statistics and the spectrum of the emitted light. Our main result is the determination of a range of parameters in which a state of cavity modes with poissonian or sub-poissonian (non-classical) statistics can be built up within the microcavity. Depending on the relative values of pumping and rate of stimulated emission, either one or two peaks close to the excitation energy of the dot and/or to the natural frequency of the cavity are observed in the emission spectrum. The physics behind these results is discussed
    corecore