785 research outputs found
On the near-critical behavior of cavitation in elastic plane membranes
Abstract Material cavitation under tensile loading is often studied by assuming the pre-existence of a small void. In this case the void would initially grow but without significant change in its size, and cavitation is said to take place if this slow growth is followed by rapid growth at higher load values. In the limit when the original void radius δ tends to zero, there will be no growth until a load or stretch measure, λ say, reaches a well-defined critical value λ cr at which a cavity appears suddenly. In this paper we study the near-critical asymptotic behavior of cavitation in plane membranes when δ is not zero but small, and show that the near-critical behavior is governed by a scaling law in the form λ − λ cr = C ( δ / L ) m , where L is the undeformed outer radius of the plane membrane, and C and m are non-dimensional constants. The positive power m in general depends on the material model used, but for the three classes of material models considered, it happens to be equal to 2 ( 1 + ν ) / ( 3 + ν ) in each case, where ν is Poisson’s ratio for infinitesimal deformations. If a pre-existing void is viewed as an imperfection, then this scaling law describes the imperfection sensitivity of cavitation: it states that in the presence of imperfections significant void growth would occur when λ were increased to within an order ( δ / L ) m interval around λ cr
Do unsaturated fatty acids have beneficial effect on reduction of stroke risk in hypertensive population?
Abstracts for Chaired Posters: no. CP10BACKGROUND: It has been suggested that monospecific unsaturated fatty acids have potential effect on protection against stroke. Studies on the effect of different categories of fatty acids are lacking. The stroke incidence is high in hypertensive patients. Therefore, we studied the relationship between serum level of 6 categories of fatty acids and stroke incidence in ...postprin
Effects of pre-stretch, compressibility and material constitution on the period-doubling secondary bifurcation of a film/substrate bilayer
We refine a previously proposed semi-analytical method, and use it to study the effects of pre-stretch, compressibility and material constitution on the period-doubling secondary bifurcation of a uni-axially compressed film/substrate bilayer structure. It is found that compared with the case of incompressible neo-Hookean materials for which the critical strain is approximately 0.17 when the thin layer is much stiffer than the substrate, the critical strain when the Gent materials are used is a monotonically increasing function of the constant Jm that characterizes material extensibility, becoming as small as 0.12 when Jm is equal to 1, whereas for compressible neo-Hookean materials the critical strain is a monotonically decreasing function of Poisson’s ratio; the period-doubling secondary bifurcation seems to become impossible when Poisson’s ratio is approximately equal to 0.307. The latter result may indicate that when Poisson’s ratio is small enough there are other preferred secondary bifurcations — an example is given where a secondary bifurcation mode with times the original period occurs at a lower strain value. The effect of a pre-stretch (compression or extension) in the substrate is not monotonic, giving rise to a critical strain that varies between 0.15 and 0.22
A four-dimensional {\Lambda}CDM-type cosmological model induced from higher dimensions using a kinematical constraint
A class of cosmological solutions of higher dimensional Einstein field
equations with the energy-momentum tensor of a homogeneous, isotropic fluid as
the source are considered with an anisotropic metric that includes the direct
sum of a 3-dimensional (physical, flat) external space metric and an
n-dimensional (compact, flat) internal space metric. A simple kinematical
constraint is postulated that correlates the expansion rates of the external
and internal spaces in terms of a real parameter {\lambda}. A specific solution
for which both the external and internal spaces expand at different rates is
given analytically for n=3. Assuming that the internal dimensions were at
Planck length scales when the external space starts with a Big Bang (t=0), they
expand only 1.49 times and stay at Planck length scales even in the present age
of the universe (13.7 Gyr). The effective four dimensional universe would
exhibit a behavior consistent with our current understanding of the observed
universe. It would start in a stiff fluid dominated phase and evolve through
radiation dominated and pressureless matter dominated phases, eventually going
into a de Sitter phase at late times.Comment: 12 pages, 8 figures; matches the version published in General
Relativity and Gravitatio
Study of psi(2S) decays to X J/psi
Using J/psi -> mu^+ mu^- decays from a sample of approximately 4 million
psi(2S) events collected with the BESI detector, the branching fractions of
psi(2S) -> eta J/psi, pi^0 pi^0 J/psi, and anything J/psi normalized to that of
psi(2S) -> pi^+ pi^- J/psi are measured. The results are B(psi(2S) -> eta
J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.098 \pm 0.005 \pm 0.010, B(psi(2S) ->
pi^0 pi^0 J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.570 \pm 0.009 \pm 0.026, and
B(psi(2S) -> anything J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 1.867 \pm 0.026
\pm 0.055.Comment: 13 pages, 8 figure
First observation of psi(2S)-->K_S K_L
The decay psi(2S)-->K_S K_L is observed for the first time using psi(2S) data
collected with the Beijing Spectrometer (BESII) at the Beijing Electron
Positron Collider (BEPC); the branching ratio is determined to be
B(psi(2S)-->K_S K_L) = (5.24\pm 0.47 \pm 0.48)\times 10^{-5}. Compared with
J/psi-->K_S K_L, the psi(2S) branching ratio is enhanced relative to the
prediction of the perturbative QCD ``12%'' rule. The result, together with the
branching ratios of psi(2S) decays to other pseudoscalar meson pairs
(\pi^+\pi^- and K^+K^-), is used to investigate the relative phase between the
three-gluon and the one-photon annihilation amplitudes of psi(2S) decays.Comment: 5 pages, 4 figures, 2 tables, submitted to Phys. Rev. Let
Resonances in and
A partial wave analysis is presented of and
from a sample of 58M events in the BES II detector. The
is observed clearly in both sets of data, and parameters of the
Flatt\' e formula are determined accurately: (stat)
(syst) MeV/c, MeV/c, . The data also exhibit a strong peak
centred at MeV/c. It may be fitted with and a
dominant signal made from interfering with a smaller
component. There is evidence that the signal is
resonant, from interference with . There is also a state in with MeV/c and
MeV/c; spin 0 is preferred over spin 2. This state, , is
distinct from . The data contain a strong peak due to
. A shoulder on its upper side may be fitted by interference
between and .Comment: 17 pages, 6 figures, 1 table. Submitted to Phys. Lett.
Measurement of the Branching Fraction of J/psi --> pi+ pi- pi0
Using 58 million J/psi and 14 million psi' decays obtained by the BESII
experiment, the branching fraction of J/psi --> pi+ pi- pi0 is determined. The
result is (2.10+/-0.12)X10^{-2}, which is significantly higher than previous
measurements.Comment: 9 pages, 8 figures, RevTex
Search for K_S K_L in psi'' decays
K_S K_L from psi'' decays is searched for using the psi'' data collected by
BESII at BEPC, the upper limit of the branching fraction is determined to be
B(psi''--> K_S K_L) < 2.1\times 10^{-4} at 90% C. L. The measurement is
compared with the prediction of the S- and D-wave mixing model of the
charmonia, based on the measurements of the branching fractions of J/psi-->K_S
K_L and psi'-->K_S K_L.Comment: 5 pages, 1 figur
- …
