2,827 research outputs found

    Networked Control Systems: The Communication Basics and Control Methodologies

    Get PDF
    As an emerging research field, networked control systems have shown the increasing importance and attracted more and more attention in the recent years. The integration of control and communication in networked control systems has made the design and analysis of such systems a great theoretical challenge for conventional control theory. Such an integration also makes the implementation of networked control systems a necessary intermediate step towards the final convergence of control, communication, and computation. We here introduce the basics of networked control systems and then describe the state-of-the-art research in this field. We hope such a brief tutorial can be useful to inspire further development of networked control systems in both theory and potential applications

    Life-Logging Data Aggregation Solution for Interdisciplinary Healthcare Research and Collaboration

    Get PDF
    The wide-spread use of wearable devices and mobile apps in the Internet of Things (IoT) environments makes effectively capture of life-logging personal health data come true. A long-term collection of these health data will benefit to interdisciplinary healthcare research and collaboration. But most wearable devices and mobile apps in the market focus on personal fitness plan and lack of compatibility and extensibility to each other. Existing IoT based platforms rarely achieve a successful heterogeneous life-logging data aggregation. Also, the demand on high security increases difficulties of designing reliable platform for integrating and managing multi-resource life-logging health data. This paper investigates the possibility of collecting and aggregating life-logging data with the use of wearable devices, mobile apps and social media. It compares existing personal health data collection solutions and identifies essential needs of designing a life-logging data aggregator in the IoT environments. An integrated data collection solution with high secure standard is proposed and deployed on a state-of-the-art interdisciplinary healthcare platform: MHA [15] by integrating five life-logging resources: Fitbit, Moves, Facbook, Twitter, etc. The preliminary experiment demonstrates that it successfully record, store and reuse the unified and structured personal health information in a long term, including activities, location, exercise, sleep, food, heat rate and mood

    Realization of a Tunable Artificial Atom at a Supercritically Charged Vacancy in Graphene

    Full text link
    The remarkable electronic properties of graphene have fueled the vision of a graphene-based platform for lighter, faster and smarter electronics and computing applications. One of the challenges is to devise ways to tailor its electronic properties and to control its charge carriers. Here we show that a single atom vacancy in graphene can stably host a local charge and that this charge can be gradually built up by applying voltage pulses with the tip of a scanning tunneling microscope (STM). The response of the conduction electrons in graphene to the local charge is monitored with scanning tunneling and Landau level spectroscopy, and compared to numerical simulations. As the charge is increased, its interaction with the conduction electrons undergoes a transition into a supercritical regime 6-11 where itinerant electrons are trapped in a sequence of quasi-bound states which resemble an artificial atom. The quasi-bound electron states are detected by a strong enhancement of the density of states (DOS) within a disc centered on the vacancy site which is surrounded by halo of hole states. We further show that the quasi-bound states at the vacancy site are gate tunable and that the trapping mechanism can be turned on and off, providing a new mechanism to control and guide electrons in grapheneComment: 18 pages and 5 figures plus 14 pages and 15 figures of supplementary information. Nature Physics advance online publication, Feb 22 (2016

    Transport Spectroscopy of Symmetry-Broken Insulating States in Bilayer Graphene

    Full text link
    The flat bands in bilayer graphene(BLG) are sensitive to electric fields E\bot directed between the layers, and magnify the electron-electron interaction effects, thus making BLG an attractive platform for new two-dimensional (2D) electron physics[1-5]. Theories[6-16] have suggested the possibility of a variety of interesting broken symmetry states, some characterized by spontaneous mass gaps, when the electron-density is at the carrier neutrality point (CNP). The theoretically proposed gaps[6,7,10] in bilayer graphene are analogous[17,18] to the masses generated by broken symmetries in particle physics and give rise to large momentum-space Berry curvatures[8,19] accompanied by spontaneous quantum Hall effects[7-9]. Though recent experiments[20-23] have provided convincing evidence of strong electronic correlations near the CNP in BLG, the presence of gaps is difficult to establish because of the lack of direct spectroscopic measurements. Here we present transport measurements in ultra-clean double-gated BLG, using source-drain bias as a spectroscopic tool to resolve a gap of ~2 meV at the CNP. The gap can be closed by an electric field E\bot \sim13 mV/nm but increases monotonically with a magnetic field B, with an apparent particle-hole asymmetry above the gap, thus providing the first mapping of the ground states in BLG.Comment: 4 figure

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Polymorphisms of two neuroendocrine–correlated genes associated with body weight and reproductive traits in Jinghai yellow chicken

    Get PDF
    In this study, insulin-like growth factor binding protein 2 (IGFBP-2) and signal transducers activators of transcription 5b (STAT5b) gene were studied as candidate gene associated with body weight and reproductive traits of the Jinghai Yellow chicken. Single nucleotide polymorphisms (SNPs) of the IGFBP-2 and STAT5b genes were examined in both Jinghai Yellow chicken and three reference chicken populations by PCR-SSCP. Two SNPs (T3746TG and CC3753TT) were detected in the IGFBP-2 gene. One SNP (C8066T) was observed in the STAT5b gene. For primer 1, the general linear model analysis showed that Jinghai yellow chickens with FF genotypes had significant effect on hatch weight, egg weight at 300 days and body weight at 300 days than those of the EF genotype and had significant effect on body weight at 8 weeks of age than those of the EE genotype (P &lt; 0.05). For primer 2, Jinghai yellow chickens with CT genotype had significant effect on hatch weight and age at first egg than CC genotype and TT genotype respectively (P &lt; 0.05). SNPs in both IGFBP-2 and STAT5b genes had significant effect on body weight and reproductive traits of the Jinghai yellow chicken than those with either SNP alone. These SNPs may be served as a potential genetic marker for growth and reproduction traits evaluation of the Jinghai yellow chicken.Key words: Jinghai Yellow chicken, IGFBP-2 gene, STAT5b gene, economic traits, polymorphism

    Micro-manufacturing : research, technology outcomes and development issues

    Get PDF
    Besides continuing effort in developing MEMS-based manufacturing techniques, latest effort in Micro-manufacturing is also in Non-MEMS-based manufacturing. Research and technological development (RTD) in this field is encouraged by the increased demand on micro-components as well as promised development in the scaling down of the traditional macro-manufacturing processes for micro-length-scale manufacturing. This paper highlights some EU funded research activities in micro/nano-manufacturing, and gives examples of the latest development in micro-manufacturing methods/techniques, process chains, hybrid-processes, manufacturing equipment and supporting technologies/device, etc., which is followed by a summary of the achievements of the EU MASMICRO project. Finally, concluding remarks are given, which raise several issues concerning further development in micro-manufacturing

    The Formation and Evolution of the First Massive Black Holes

    Full text link
    The first massive astrophysical black holes likely formed at high redshifts (z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations. These black holes grow by mergers and gas accretion, evolve into the population of bright quasars observed at lower redshifts, and eventually leave the supermassive black hole remnants that are ubiquitous at the centers of galaxies in the nearby universe. The astrophysical processes responsible for the formation of the earliest seed black holes are poorly understood. The purpose of this review is threefold: (1) to describe theoretical expectations for the formation and growth of the earliest black holes within the general paradigm of hierarchical cold dark matter cosmologies, (2) to summarize several relevant recent observations that have implications for the formation of the earliest black holes, and (3) to look into the future and assess the power of forthcoming observations to probe the physics of the first active galactic nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant Universe", Ed. A. J. Barger, Kluwer Academic Publisher
    corecore