2,827 research outputs found
Large-Eddy Simulation of Pollutant Dispersion from a Ground-Level Area Source Over Urban Street Canyons with Irreversible Chemical Reactions
published_or_final_versio
Networked Control Systems: The Communication Basics and Control Methodologies
As an emerging research field, networked control systems have shown the increasing importance and attracted more and more attention in the recent years. The integration of control and communication in networked control systems has made the design and analysis of such systems a great theoretical challenge for conventional control theory. Such an integration also makes the implementation of networked control systems a necessary intermediate step towards the final convergence of control, communication, and computation. We here introduce the basics of networked control systems and then describe the state-of-the-art research in this field. We hope such a brief tutorial can be useful to inspire further development of networked control systems in both theory and potential applications
Life-Logging Data Aggregation Solution for Interdisciplinary Healthcare Research and Collaboration
The wide-spread use of wearable devices and mobile apps in the Internet of Things (IoT) environments makes effectively capture of life-logging personal health data come true. A long-term collection of these health data will benefit to interdisciplinary healthcare research and collaboration. But most wearable devices and mobile apps in the market focus on personal fitness plan and lack of compatibility and extensibility to each other. Existing IoT based platforms rarely achieve a successful heterogeneous life-logging data aggregation. Also, the demand on high security increases difficulties of designing reliable platform for integrating and managing multi-resource life-logging health data. This paper investigates the possibility of collecting and aggregating life-logging data with the use of wearable devices, mobile apps and social media. It compares existing personal health data collection solutions and identifies essential needs of designing a life-logging data aggregator in the IoT environments. An integrated data collection solution with high secure standard is proposed and deployed on a state-of-the-art interdisciplinary healthcare platform: MHA [15] by integrating five life-logging resources: Fitbit, Moves, Facbook, Twitter, etc. The preliminary experiment demonstrates that it successfully record, store and reuse the unified and structured personal health information in a long term, including activities, location, exercise, sleep, food, heat rate and mood
Realization of a Tunable Artificial Atom at a Supercritically Charged Vacancy in Graphene
The remarkable electronic properties of graphene have fueled the vision of a
graphene-based platform for lighter, faster and smarter electronics and
computing applications. One of the challenges is to devise ways to tailor its
electronic properties and to control its charge carriers. Here we show that a
single atom vacancy in graphene can stably host a local charge and that this
charge can be gradually built up by applying voltage pulses with the tip of a
scanning tunneling microscope (STM). The response of the conduction electrons
in graphene to the local charge is monitored with scanning tunneling and Landau
level spectroscopy, and compared to numerical simulations. As the charge is
increased, its interaction with the conduction electrons undergoes a transition
into a supercritical regime 6-11 where itinerant electrons are trapped in a
sequence of quasi-bound states which resemble an artificial atom. The
quasi-bound electron states are detected by a strong enhancement of the density
of states (DOS) within a disc centered on the vacancy site which is surrounded
by halo of hole states. We further show that the quasi-bound states at the
vacancy site are gate tunable and that the trapping mechanism can be turned on
and off, providing a new mechanism to control and guide electrons in grapheneComment: 18 pages and 5 figures plus 14 pages and 15 figures of supplementary
information. Nature Physics advance online publication, Feb 22 (2016
Transport Spectroscopy of Symmetry-Broken Insulating States in Bilayer Graphene
The flat bands in bilayer graphene(BLG) are sensitive to electric fields
E\bot directed between the layers, and magnify the electron-electron
interaction effects, thus making BLG an attractive platform for new
two-dimensional (2D) electron physics[1-5]. Theories[6-16] have suggested the
possibility of a variety of interesting broken symmetry states, some
characterized by spontaneous mass gaps, when the electron-density is at the
carrier neutrality point (CNP). The theoretically proposed gaps[6,7,10] in
bilayer graphene are analogous[17,18] to the masses generated by broken
symmetries in particle physics and give rise to large momentum-space Berry
curvatures[8,19] accompanied by spontaneous quantum Hall effects[7-9]. Though
recent experiments[20-23] have provided convincing evidence of strong
electronic correlations near the CNP in BLG, the presence of gaps is difficult
to establish because of the lack of direct spectroscopic measurements. Here we
present transport measurements in ultra-clean double-gated BLG, using
source-drain bias as a spectroscopic tool to resolve a gap of ~2 meV at the
CNP. The gap can be closed by an electric field E\bot \sim13 mV/nm but
increases monotonically with a magnetic field B, with an apparent particle-hole
asymmetry above the gap, thus providing the first mapping of the ground states
in BLG.Comment: 4 figure
Application of Graphene within Optoelectronic Devices and Transistors
Scientists are always yearning for new and exciting ways to unlock graphene's
true potential. However, recent reports suggest this two-dimensional material
may harbor some unique properties, making it a viable candidate for use in
optoelectronic and semiconducting devices. Whereas on one hand, graphene is
highly transparent due to its atomic thickness, the material does exhibit a
strong interaction with photons. This has clear advantages over existing
materials used in photonic devices such as Indium-based compounds. Moreover,
the material can be used to 'trap' light and alter the incident wavelength,
forming the basis of the plasmonic devices. We also highlight upon graphene's
nonlinear optical response to an applied electric field, and the phenomenon of
saturable absorption. Within the context of logical devices, graphene has no
discernible band-gap. Therefore, generating one will be of utmost importance.
Amongst many others, some existing methods to open this band-gap include
chemical doping, deformation of the honeycomb structure, or the use of carbon
nanotubes (CNTs). We shall also discuss various designs of transistors,
including those which incorporate CNTs, and others which exploit the idea of
quantum tunneling. A key advantage of the CNT transistor is that ballistic
transport occurs throughout the CNT channel, with short channel effects being
minimized. We shall also discuss recent developments of the graphene tunneling
transistor, with emphasis being placed upon its operational mechanism. Finally,
we provide perspective for incorporating graphene within high frequency
devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and
the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures
Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay
The decay channel
is studied using a sample of events collected
by the BESIII experiment at BEPCII. A strong enhancement at threshold is
observed in the invariant mass spectrum. The enhancement can be fit
with an -wave Breit-Wigner resonance function with a resulting peak mass of
and a
narrow width that is at the 90% confidence level.
These results are consistent with published BESII results. These mass and width
values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
Polymorphisms of two neuroendocrine–correlated genes associated with body weight and reproductive traits in Jinghai yellow chicken
In this study, insulin-like growth factor binding protein 2 (IGFBP-2) and signal transducers activators of transcription 5b (STAT5b) gene were studied as candidate gene associated with body weight and reproductive traits of the Jinghai Yellow chicken. Single nucleotide polymorphisms (SNPs) of the IGFBP-2 and STAT5b genes were examined in both Jinghai Yellow chicken and three reference chicken populations by PCR-SSCP. Two SNPs (T3746TG and CC3753TT) were detected in the IGFBP-2 gene. One SNP (C8066T) was observed in the STAT5b gene. For primer 1, the general linear model analysis showed that Jinghai yellow chickens with FF genotypes had significant effect on hatch weight, egg weight at 300 days and body weight at 300 days than those of the EF genotype and had significant effect on body weight at 8 weeks of age than those of the EE genotype (P < 0.05). For primer 2, Jinghai yellow chickens with CT genotype had significant effect on hatch weight and age at first egg than CC genotype and TT genotype respectively (P < 0.05). SNPs in both IGFBP-2 and STAT5b genes had significant effect on body weight and reproductive traits of the Jinghai yellow chicken than those with either SNP alone. These SNPs may be served as a potential genetic marker for growth and reproduction traits evaluation of the Jinghai yellow chicken.Key words: Jinghai Yellow chicken, IGFBP-2 gene, STAT5b gene, economic traits, polymorphism
Micro-manufacturing : research, technology outcomes and development issues
Besides continuing effort in developing MEMS-based manufacturing techniques, latest effort in Micro-manufacturing is also in Non-MEMS-based manufacturing. Research and technological development (RTD) in this field is encouraged by the increased demand on micro-components as well as promised development in the scaling down of the traditional macro-manufacturing processes for micro-length-scale manufacturing. This paper highlights some EU funded research activities in micro/nano-manufacturing, and gives examples of the latest development in micro-manufacturing methods/techniques, process chains, hybrid-processes, manufacturing equipment and supporting technologies/device, etc., which is followed by a summary of the achievements of the EU MASMICRO project. Finally, concluding remarks are given, which raise several issues concerning further development in micro-manufacturing
The Formation and Evolution of the First Massive Black Holes
The first massive astrophysical black holes likely formed at high redshifts
(z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations.
These black holes grow by mergers and gas accretion, evolve into the population
of bright quasars observed at lower redshifts, and eventually leave the
supermassive black hole remnants that are ubiquitous at the centers of galaxies
in the nearby universe. The astrophysical processes responsible for the
formation of the earliest seed black holes are poorly understood. The purpose
of this review is threefold: (1) to describe theoretical expectations for the
formation and growth of the earliest black holes within the general paradigm of
hierarchical cold dark matter cosmologies, (2) to summarize several relevant
recent observations that have implications for the formation of the earliest
black holes, and (3) to look into the future and assess the power of
forthcoming observations to probe the physics of the first active galactic
nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant
Universe", Ed. A. J. Barger, Kluwer Academic Publisher
- …
