43 research outputs found

    CMB Telescopes and Optical Systems

    Full text link
    The cosmic microwave background radiation (CMB) is now firmly established as a fundamental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB observations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1: Telescopes and Instrumentatio

    Tie them up tight: wrapping by Philoponella vicinaspiders breaks, compresses and sometimes kills their prey

    Get PDF
    We show that uloborid spiders, which lack the poison glands typical of nearly all other spiders, employ thousands of wrapping movements with their hind legs and up to hundreds of meters of silk line to make a shroud that applies substantial compressive force to their prey. Shrouds sometimes break the prey’s legs, buckle its compound eyes inward, or kill it outright. The compressive force apparently results from the summation of small tensions on sticky lines as they are applied to the prey package. Behavioral details indicate that wrapping is designed to compact prey; in turn, compaction probably functions to facilitate these spiders’ unusual method of feeding. This is the first demonstration that prey wrapping by spiders compacts and physically damages their prey, rather than simply restraining them.Instituto Smithsoniano de Investigaciones Tropicales (STRI)Universidad de Costa RicaUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Biologí

    A computational approach for spider web‐inspired fabrication of string art

    No full text
    Creating objects with threads is commonly referred to as string art. It is typically a manual, tedious work reserved for skilled artists. In this paper, we investigate how to automatically fabricate string art pieces from one single continuous thread in such a way that it looks like an input image. The proposed system consists of a thread connection optimization algorithm and a custom-made fabrication machine. It allows casual users to create their own personalized string art pieces in a fully automatic manner. Quantitative and qualitative evaluations demonstrated our system can create visually appealing results.
    corecore