17 research outputs found
Rapamycin Combined with Anti-CD45RB mAb and IL-10 or with G-CSF Induces Tolerance in a Stringent Mouse Model of Islet Transplantation
Background: A large pool of preexisting alloreactive effector T cells can cause allogeneic graft rejection following transplantation. However, it is possible to induce transplant tolerance by altering the balance between effector and regulatory T (Treg) cells. Among the various Treg-cell types, Foxp3 +Treg and IL-10-producing T regulatory type 1 (Tr1) cells have frequently been associated with tolerance following transplantation in both mice and humans. Previously, we demonstrated that rapamycin+IL-10 promotes Tr1-cell-associated tolerance in Balb/c mice transplanted with C57BL/6 pancreatic islets. However, this same treatment was unsuccessful in C57BL/6 mice transplanted with Balb/c islets (classified as a stringent transplant model). We accordingly designed a protocol that would be effective in the latter transplant model by simultaneously depleting effector T cells and fostering production of Treg cells. We additionally developed and tested a clinically translatable protocol that used no depleting agent. Methodology/Principal Findings: Diabetic C57BL/6 mice were transplanted with Balb/c pancreatic islets. Recipient mice transiently treated with anti-CD45RB mAb+rapamycin+IL-10 developed antigen-specific tolerance. During treatment, Foxp3 +Treg cells were momentarily enriched in the blood, followed by accumulation in the graft and draining lymph node, whereas CD4 +IL-10 +IL-4 - T (i.e., Tr1) cells localized in the spleen. In long-term tolerant mice, only CD4 +IL-10 +IL-4 - T cells remained enriched in the spleen and IL-10 was key in the maintenance of tolerance. Alternatively, recipient mice were treated with two compounds routinely used in the clinic (namely, rapamycin and G-CSF); this drug combination promoted tolerance associated with CD4 +IL-10 +IL-4 - T cells. Conclusions/Significance: The anti-CD45RB mAb+rapamycin+IL-10 combined protocol promotes a state of tolerance that is IL-10 dependent. Moreover, the combination of rapamycin+G-CSF induces tolerance and such treatment could be readily translatable into the clinic. © 2011 Gagliani et al
Physician and Patient Predictors of Evidence-Based Prescribing in Heart Failure: A Multilevel Study
BACKGROUND: The management of patients with heart failure (HF) needs to account for changeable and complex individual clinical characteristics. The use of renin angiotensin system inhibitors (RAAS-I) to target doses is recommended by guidelines. But physicians seemingly do not sufficiently follow this recommendation, while little is known about the physician and patient predictors of adherence. METHODS: To examine the coherence of primary care (PC) physicians' knowledge and self-perceived competencies regarding RAAS-I with their respective prescribing behavior being related to patient-associated barriers. Cross-sectional follow-up study after a randomized medical educational intervention trial with a seven month observation period. PC physicians (n = 37) and patients with systolic HF (n = 168) from practices in Baden-Wuerttemberg. Measurements were knowledge (blueprint-based multiple choice test), self-perceived competencies (questionnaire on global confidence in the therapy and on frequency of use of RAAS-I), and patient variables (age, gender, NYHA functional status, blood pressure, potassium level, renal function). Prescribing was collected from the trials' documentation. The target variable consisted of ≥50% of recommended RAAS-I dosage being investigated by two-level logistic regression models. RESULTS: Patients (69% male, mean age 68.8 years) showed symptomatic and objectified left ventricular (NYHA II vs. III/IV: 51% vs. 49% and mean LVEF 33.3%) and renal (GFR<50%: 22%) impairment. Mean percentage of RAAS-I target dose was 47%, 59% of patients receiving ≥50%. Determinants of improved prescribing of RAAS-I were patient age (OR 0.95, CI 0.92-0.99, p = 0.01), physician's global self-confidence at follow-up (OR 1.09, CI 1.02-1.05, p = 0.01) and NYHA class (II vs. III/IV) (OR 0.63, CI 0.38-1.05, p = 0.08). CONCLUSIONS: A change in physician's confidence as a predictor of RAAS-I dose increase is a new finding that might reflect an intervention effect of improved physicians' intention and that might foster novel strategies to improve safe evidence-based prescribing. These should include targeting knowledge, attitudes and skills
Glucose metabolism and NRF2 coordinate the antioxidant response in melanoma resistant to MAPK inhibitors
Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors
Body composition phenotypes in pathways to obesity and the metabolic syndrome.
Dynamic changes in body weight have long been recognized as important indicators of risk for debilitating diseases. While weight loss or impaired growth can lead to muscle wastage, as well as to susceptibility to infections and organ dysfunctions, the development of excess fat predisposes to type 2 diabetes and cardiovascular diseases, with insulin resistance as a central feature of the disease entities of the metabolic syndrome. Although widely used as the phenotypic expression of adiposity in population and gene-search studies, body mass index (BMI), that is, weight/height(2) (H(2)), which was developed as an operational definition for classifying both obesity and malnutrition, has considerable limitations in delineating fat mass (FM) from fat-free mass (FFM), in particular at the individual level. After an examination of these limitations within the constraints of the BMI-FM% relationship, this paper reviews recent advances in concepts about health risks related to body composition phenotypes, which center upon (i) the partitioning of BMI into an FM index (FM/H(2)) and an FFM index (FFM/H(2)), (ii) the partitioning of FFM into organ mass and skeletal muscle mass, (iii) the anatomical partitioning of FM into hazardous fat and protective fat and (iv) the interplay between adipose tissue expandability and ectopic fat deposition within or around organs/tissues that constitute the lean body mass. These concepts about body composition phenotypes and health risks are reviewed in the light of race/ethnic variability in metabolic susceptibility to obesity and the metabolic syndrome
Recommended from our members
The Majorana Demonstrator neutrinoless double-beta decay experiment
The Majorana Demonstrator will search for the neutrinoless double-beta (β β 0 ) decay of the isotope Ge with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate that the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino. The Demonstrator is being assembled at the 4850-foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the Demonstrator and the details of its design. © 2014 N. Abgrall et al
Recommended from our members
The Majorana Demonstrator Neutrinoless Double-Beta Decay Experiment
The {\sc Majorana Demonstrator will search for the neutrinoless double-beta decay of the isotope Ge-76 with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino. The {\sc Demonstrator} is being assembled at the 4850-foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the {\sc Demonstrator} and the details of its design.The MAJORANA DEMONSTRATOR will search for the neutrinoless double-beta decay of the isotope Ge with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate that the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino. The DEMONSTRATOR is being assembled at the 4850-foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the DEMONSTRATOR and the details of its design
