3,491 research outputs found
Patterning of ferroelectric nanodot arrays using a silicon nitride shadow mask
We grew well-ordered arrays of ferroelectric Pb (Zr0.2 Ti0.8) O3 (PZT) nanodots on a SrRu O3 SrTi O3 substrate by pulsed laser deposition. A silicon nitride shadow mask with ordered holes was used for patterning of the PZT arrays. Each dot has a height of ???15 nm and a diameter of ???120 nm with a similar dome shape over a large area. The ferroelectric properties of individual PZT dots were investigated by piezoresponse force microscopy. A single dot could be polarized individually and the polarized state remained unrelaxed to ???20 min.open232
Fingerprint oxygen redox reactions in batteries through high-efficiency mapping of resonant inelastic X-ray scattering
Realizing reversible reduction-oxidation (redox) reactions of lattice oxygen in batteries is a promising way to improve the energy and power density. However, conventional oxygen absorption spectroscopy fails to distinguish the critical oxygen chemistry in oxide-based battery electrodes. Therefore, high-efficiency full-range mapping of resonant inelastic X-ray scattering (mRIXS) has been developed as a reliable probe of oxygen redox reactions. Here, based on mRIXS results collected from a series of Li Ni Co Mn O electrodes at different electrochemical states and its comparison with peroxides, we provide a comprehensive analysis of five components observed in the mRIXS results. While all the five components evolve upon electrochemical cycling, only two of them correspond to the critical states associated with oxygen redox reactions. One is a specific feature at 531.0 eV excitation and 523.7 eV emission energy, the other is a low-energy loss feature. We show that both features evolve with electrochemical cycling of Li Ni Co Mn O electrodes, and could be used for characterizing oxidized oxygen states in the lattice of battery electrodes. This work provides an important benchmark for a complete assignment of all mRIXS features collected from battery materials, which sets a general foundation for future studies in characterization, analysis, and theoretical calculation for probing and understanding oxygen redox reactions. 1.17 0.21 0.08 0.54 2 1.17 0.21 0.08 0.54
Momentum-resolved resonant inelastic soft X-ray scattering (qRIXS) endstation at the ALS
A momentum resolved resonant inelastic X-ray scattering (qRIXS) experimental station with continuously rotatable spectrometers and parallel detection is designed to operate at different beamlines at synchrotron and free electron laser (FEL) facilities. This endstation, currently located at the Advanced Light Source (ALS), has five emission ports on the experimental chamber for mounting the high-throughput modular soft X-ray spectrometers (MXS) [24]. Coupled to the rotation from the supporting hexapod, the scattered X-rays from 27.5° (forward scattering) to 152.5° (backward scattering) relative to the incident photon beam can be recorded, enabling the momentum-resolved RIXS spectroscopy. The components of this endstation are described in details, and the preliminary RIXS measurements on highly oriented pyrolytic graphite (HOPG) reveal the low energy vibronic excitations from the strong electron-phonon coupling at C K edge around σ* band. The grating upgrade option to enhance the performance at low photon energies is presented and the potential of this spectroscopy is discussed in summary
The role of TcdB and TccC subunits in secretion of the photorhabdus Tcd toxin complex
The Toxin Complex (TC) is a large multi-subunit toxin encoded by a range of bacterial pathogens. The best-characterized examples are from the insect pathogens Photorhabdus, Xenorhabdus and Yersinia. They consist of three large protein subunits, designated A, B and C that assemble in a 5:1:1 stoichiometry. Oral toxicity to a range of insects means that some have the potential to be developed as pest control technology. The three subunit proteins do not encode any recognisable export sequences and as such little progress has been made in understanding their secretion. We have developed heterologous TC production and secretion models in E. coli and used them to ascribe functions to different domains of the crucial B+C sub-complex. We have determined that the B and C subunits use a secretion mechanism that is either encoded by the proteins themselves or employ an as yet undefined system common to laboratory strains of E. coli. We demonstrate that both the N-terminal domains of the B and C subunits are required for secretion of the whole complex. We propose a model whereby the N-terminus of the C-subunit toxin exports the B+C sub-complex across the inner membrane while that of the B-subunit allows passage across the outer membrane. We also demonstrate that even in the absence of the B-subunit, that the C-subunit can also facilitate secretion of the larger A-subunit. The recognition of this novel export system is likely to be of importance to future protein secretion studies. Finally, the identification of homologues of B and C subunits in diverse bacterial pathogens, including Burkholderia and Pseudomonas, suggests that these toxins are likely to be important in a range of different hosts, including man
Phosphorylation of the androgen receptor is associated with reduced survival in hormonerefractory prostate cancer patients
Cell line studies demonstrate that the PI3K/Akt pathway is upregulated in hormone-refractory prostate cancer (HRPC) and can result in phosphorylation of the androgen receptor (AR). The current study therefore aims to establish if this has relevance to the development of clinical HRPC. Immunohistochemistry was employed to investigate the expression and phosphorylation status of Akt and AR in matched hormone-sensitive and -refractory prostate cancer tumours from 68 patients. In the hormone-refractory tissue, only phosphorylated AR (pAR) was associated with shorter time to death from relapse (<i>P</i>=0.003). However, when an increase in expression in the transition from hormone-sensitive to -refractory prostate cancer was investigated, an increase in expression of PI3K was associated with decreased time to biochemical relapse (<i>P</i>=0.014), and an increase in expression of pAkt<sup>473</sup> and pAR<sup>210</sup> were associated with decreased disease-specific survival (<i>P</i>=0.0019 and 0.0015, respectively). Protein expression of pAkt<sup>473</sup> and pAR<sup>210</sup> also strongly correlated (<i>P</i><0.001, c.c.=0.711) in the hormone-refractory prostate tumours. These results provide evidence using clinical specimens, that upregulation of the PI3K/Akt pathway is associated with phosphorylation of the AR during development of HRPC, suggesting that this pathway could be a potential therapeutic target
CLDN3 inhibits cancer aggressiveness via Wnt-EMT signaling and is a potential prognostic biomarker for hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is one of the most common fatal malignancies but the molecular genetic basis of this disease remains unclear. By using genome-wide methylation profiling analysis, we identified CLDN3 as an epigenetically regulated gene in cancer. Here, we investigated its function and clinical relevance in human HCC. CLDN3 downregulation occurred in 87/114 (76.3%) of primary HCCs, where it was correlated significantly with shorter survival of HCC patients (P=0.021). Moreover, multivariate cyclooxygenase regression analysis showed that CLDN3 was an independent prognostic factor for overall survival (P=0.014). Absent expression of CLDN3 was also detected in 67% of HCC cell lines, which was significantly associated with its promoter hypermethylation. Ectopic expression of CLDN3 in HCC cells could inhibit cell motility, cell invasiveness, and tumor formation in nude mice. Mechanistic investigations suggested through downregulation of GSK3B, CTNNB1, SNAI2, and CDH2, CLDN3 could significantly suppress metastasis by inactivating the Wnt/β-catenin-epithelial mesenchymal transition (EMT) axis in HCC cells. Collectively, our findings demonstrated that CLDN3 is an epigenetically silenced metastasis suppressor gene in HCC. A better understanding of the molecular mechanism of CLDN3 in inhibiting liver cancer cell metastasis may lead to a more effective management of HCC patients with the inactivation of CLDN3.published_or_final_versio
Uneven splitting-ratio 1x2 multimode interference splitters based on silicon wire waveguides
Two types of 1x2 multi-mode interference (MMI) splitters with splitting ratios of 85:15 and 72:28 are designed. On the basis of a numerical simulation, an optimal length of the MMI section is obtained. Subsequently, the devices are fabricated and tested. The footprints of the rectangular MMI regions are only 3x18.2 and 3x14.3 (mu m). The minimum excess losses are 1.4 and 1.1 dB. The results of the test on the splitting ratios are consistent with designed values. The devices can be applied in ultra-compact photonic integrated circuits to realize the "tap" function
Antimony-doped graphene nanoplatelets
Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalystsclose0
Topological Photonics
Topology is revolutionizing photonics, bringing with it new theoretical
discoveries and a wealth of potential applications. This field was inspired by
the discovery of topological insulators, in which interfacial electrons
transport without dissipation even in the presence of impurities. Similarly,
new optical mirrors of different wave-vector space topologies have been
constructed to support new states of light propagating at their interfaces.
These novel waveguides allow light to flow around large imperfections without
back-reflection. The present review explains the underlying principles and
highlights the major findings in photonic crystals, coupled resonators,
metamaterials and quasicrystals.Comment: progress and review of an emerging field, 12 pages, 6 figures and 1
tabl
- …
