4,595 research outputs found

    A practical postprocessing technique for real-time block-based coding system

    Get PDF
    Version of RecordPublishe

    Subband adaptive regularization method for removing blocking effect

    Get PDF
    Version of RecordPublishe

    A practical real-time post-processing technique for block effect elimination

    Get PDF
    Version of RecordPublishe

    Time-resolved photoluminescence of the size-controlled ZnO nanorods

    Get PDF
    Size dependence of the time-resolved photoluminescence (TRPL) has been investigated for the ZnO nanorods fabricated by catalyst-free metalorganic chemical vapor deposition. The nanorods have a diameter of 35 nm and lengths in the range of 150 nm to 1.1 mum. The TRPL decay rate decreases monotonically as the length of the nanorods increases in the range of 150 to 600 nm. Decrease of the radiative decay rate of the exciton-polariton has been invoked to account for the results. (C) 2003 American Institute of Physics.X11100sciescopu

    Effects of polarization mode dispersion on polarization-entangled photons generated via broadband pumped spontaneous parametric down-conversion

    Get PDF
    An inexpensive and compact frequency multi-mode diode laser enables a compact two-photon polarization entanglement source via the continuous wave broadband pumped spontaneous parametric down-conversion (SPDC) process. Entanglement degradation caused by polarization mode dispersion (PMD) is one of the critical issues in optical fiber-based polarization entanglement distribution. We theoretically and experimentally investigate how the initial entanglement is degraded when the two-photon polarization entangled state undergoes PMD. We report an effect of PMD unique to broadband pumped SPDC, equally applicable to pulsed pumping as well as cw broadband pumping, which is that the amount of the entanglement degradation is asymmetrical to the PMD introduced to each quantum channel. We believe that our results have important applications in long-distance distribution of polarization entanglement via optical fiber channels.1111Ysciescopu

    Regularized restoration of VQ compressed images with constrained least squares approach

    Get PDF
    Author name used in this publication: S. W. HongVersion of RecordPublishe

    Skeletal muscle glucose uptake during treadmill exercise in neuronal nitric oxide synthase-μ knockout mice

    Get PDF
    Nitric oxide influences intramuscular signaling that affects skeletal muscle glucose uptake during exercise. The role of the main NO-producing enzyme isoform activated during skeletal muscle contraction, neuronal nitric oxide synthase-μ (nNOSμ), in modulating glucose uptake has not been investigated in a physiological exercise model. In this study, conscious and unrestrained chronically catheterized nNOSμ+/+ and nNOSμ−/− mice either remained at rest or ran on a treadmill at 17 m/min for 30 min. Both groups of mice demonstrated similar exercise capacity during a maximal exercise test to exhaustion (17.7 ± 0.6 vs. 15.9 ± 0.9 min for nNOSμ+/+ and nNOSμ−/−, respectively, P &gt; 0.05). Resting and exercise blood glucose levels were comparable between the genotypes. Very low levels of NOS activity were detected in skeletal muscle from nNOSμ−/− mice, and exercise increased NOS activity only in nNOSμ+/+ mice (4.4 ± 0.3 to 5.2 ± 0.4 pmol·mg−1·min−1, P &lt; 0.05). Exercise significantly increased glucose uptake in gastrocnemius muscle (5- to 7-fold) and, surprisingly, more so in nNOSμ−/− than in nNOSμ+/+ mice ( P &lt; 0.05). This is in parallel with a greater increase in AMPK phosphorylation during exercise in nNOSμ−/− mice. In conclusion, nNOSμ is not essential for skeletal muscle glucose uptake during exercise, and the higher skeletal muscle glucose uptake during exercise in nNOSμ−/− mice may be due to compensatory increases in AMPK activation. </jats:p

    Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction

    Get PDF
    Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability.1132Ysciescopu

    Establishment of a normal medakafish spermatogonial cell line capable of sperm production in vitro

    Get PDF
    Spermatogonia are the male germ stem cells that continuously produce sperm for the next generation. Spermatogenesis is a complicated process that proceeds through mitotic phase of stem cell renewal and differentiation, meiotic phase, and postmeiotic phase of spermiogenesis. Full recapitulation of spermatogenesis in vitro has been impossible, as generation of normal spermatogonial stem cell lines without immortalization and production of motile sperm from these cells after long-term culture have not been achieved. Here we report the derivation of a normal spermatogonial cell line from a mature medakafish testis without immortalization. After 140 passages during 2 years of culture, this cell line retains stable but growth factor-dependent proliferation, a diploid karyotype, and the phenotype and gene expression pattern of spermatogonial stem cells. Furthermore, we show that this cell line can undergo meiosis and spermiogenesis to generate motile sperm. Therefore, the ability of continuous proliferation and sperm production in culture is an intrinsic property of medaka spermatogonial stem cells, and immortalization apparently is not necessary to derive male germ cell cultures. Our findings and cell line will offer a unique opportunity to study and recapitulate spermatogenesis in vitro and to develop approaches for germ-line transmission.Spermatogonia are the male germ stem cells that continuously produce sperm for the next generation. Spermatogenesis is a complicated process that proceeds through mitotic phase of stem cell renewal and differentiation, meiotic phase, and postmeiotic phase of spermiogenesis. Full recapitulation of spermatogenesis in vitro has been impossible, as generation of normal spermatogonial stem cell lines without immortalization and production of motile sperm from these cells after long-term culture have not been achieved. Here we report the derivation of a normal spermatogonial cell line from a mature medakafish testis without immortalization. After 140 passages during 2 years of culture, this cell line retains stable but growth factor-dependent proliferation, a diploid karyotype, and the phenotype and gene expression pattern of spermatogonial stem cells. Furthermore, we show that this cell line can undergo meiosis and spermiogenesis to generate motile sperm. Therefore, the ability of continuous proliferation and sperm production in culture is an intrinsic property of medaka spermatogonial stem cells, and immortalization apparently is not necessary to derive male germ cell cultures. Our findings and cell line will offer a unique opportunity to study and recapitulate spermatogenesis in vitro and to develop approaches for germ-line transmission

    Shaping the Phase of a Single Photon

    Full text link
    While the phase of a coherent light field can be precisely known, the phase of the individual photons that create this field, considered individually, cannot. Phase changes within single-photon wave packets, however, have observable effects. In fact, actively controlling the phase of individual photons has been identified as a powerful resource for quantum communication protocols. Here we demonstrate the arbitrary phase control of a single photon. The phase modulation is applied without affecting the photon's amplitude profile and is verified via a two-photon quantum interference measurement, which can result in the fermionic spatial behaviour of photon pairs. Combined with previously demonstrated control of a single photon's amplitude, frequency, and polarisation, the fully deterministic phase shaping presented here allows for the complete control of single-photon wave packets.Comment: 4 pages, 4 figure
    corecore