632 research outputs found

    A simple algorithm for finding all k-edge-connected components

    Get PDF
    published_or_final_versio

    Differential protection against oxidative stress and nitric oxide overproduction in cardiovascular and pulmonary systems by propofol during endotoxemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both overproduction of nitric oxide (NO) and oxidative injury of cardiovascular and pulmonary systems contribute to fatal cardiovascular depression during endotoxemia. We investigated in the present study the relative contribution of oxidative stress and NO to cardiovascular depression during different stages of endotoxemia, and delineated their roles in cardiovascular protective effects of a commonly used anesthetic propofol during endotoxemia.</p> <p>Methods</p> <p>Experimental endotoxemia was induced by systemic injection of <it>E. coli </it>lipopolysaccharide (LPS, 15 mg/kg) to Sprague-Dawley rats that were maintained under propofol (15 or 30 mg/kg/h, i.v.) anesthesia. Mean systemic arterial pressure (MSAP) and heart rate (HR) were monitored for 6 h after the endotoxin. Tissue level of NO was measured by chemical reduction-linked chemiluminescence and oxidative burst activity was determined using dihydroethidium method. Expression of NO synthase (NOS) was determined by immunoblotting. The Scheffé multiple range test was used for post hoc statistical analysis.</p> <p>Results</p> <p>Systemic injection of LPS (15 mg/kg) induced biphasic decreases in MSAP and HR. In the heart, lung and aorta, an abrupt increase in lipid peroxidation, our experimental index of oxidative tissue injury, was detected in early stage and sustained during late stage cardiovascular depression. LPS injection, on the other hand, induced a gradual increase in tissue nitrite and nitrate levels in the same organs that peaked during late stage endotoxemia. Propofol infusion (15 or 30 mg/kg/h, i.v.) significantly attenuated lipid peroxidation in the heart, lung and aorta during early and late stage endotoxemia. High dose (30 mg/kg/h, i.v.) propofol also reversed the LPS-induced inducible NO synthase (iNOS) upregulation and NO production in the aorta, alongside a significant amelioration of late stage cardiovascular depression and increase in survival time during endotoxemia.</p> <p>Conclusion</p> <p>Together these results suggest that oxidative injury and NO may play a differential role in LPS-induced cardiovascular depression. Oxidative tissue injury is associated with both early and late stage; whereas NO is engaged primarily in late stage cardiovascular depression. Moreover, propofol anesthesia may protect against fatal cardiovascular depression during endotoxemia by attenuating the late stage NO surge in the aorta, possibly via inhibition of iNOS upregulation by the endotoxin.</p

    Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells

    Get PDF
    February 17, 2011The conversion of lineage-committed cells to induced pluripotent stem cells (iPSCs) by reprogramming is accompanied by a global remodeling of the epigenome[superscript 1, 2, 3, 4, 5], resulting in altered patterns of gene expression[superscript 2, 6, 7, 8, 9]. Here we characterize the transcriptional reorganization of large intergenic non-coding RNAs (lincRNAs)[superscript 10, 11] that occurs upon derivation of human iPSCs and identify numerous lincRNAs whose expression is linked to pluripotency. Among these, we defined ten lincRNAs whose expression was elevated in iPSCs compared with embryonic stem cells, suggesting that their activation may promote the emergence of iPSCs. Supporting this, our results indicate that these lincRNAs are direct targets of key pluripotency transcription factors. Using loss-of-function and gain-of-function approaches, we found that one such lincRNA (lincRNA-RoR) modulates reprogramming, thus providing a first demonstration for critical functions of lincRNAs in the derivation of pluripotent stem cells

    Epigenetic memory in induced pluripotent stem cells

    Get PDF
    Somatic cell nuclear transfer and transcription-factor-based reprogramming revert adult cells to an embryonic state, and yield pluripotent stem cells that can generate all tissues. Through different mechanisms and kinetics, these two reprogramming methods reset genomic methylation, an epigenetic modification of DNA that influences gene expression, leading us to hypothesize that the resulting pluripotent stem cells might have different properties. Here we observe that low-passage induced pluripotent stem cells (iPSCs) derived by factor-based reprogramming of adult murine tissues harbour residual DNA methylation signatures characteristic of their somatic tissue of origin, which favours their differentiation along lineages related to the donor cell, while restricting alternative cell fates. Such an ‘epigenetic memory’ of the donor tissue could be reset by differentiation and serial reprogramming, or by treatment of iPSCs with chromatin-modifying drugs. In contrast, the differentiation and methylation of nuclear-transfer-derived pluripotent stem cells were more similar to classical embryonic stem cells than were iPSCs. Our data indicate that nuclear transfer is more effective at establishing the ground state of pluripotency than factor-based reprogramming, which can leave an epigenetic memory of the tissue of origin that may influence efforts at directed differentiation for applications in disease modelling or treatment.National Institutes of Health (U.S.) (NIH grant RO1-DK70055)National Institutes of Health (U.S.) (NIH Grant RO1-DK59279)National Institutes of Health (U.S.) (American Recovery and Reinvestment Act (RC2-HL102815))National Institutes of Health (U.S.) (NIH (K99HL093212-01))Cooley’s Anemia FoundationNational Institutes of Health (U.S.) (NIH LLS (3567-07))National Institutes of Health (U.S.) (NIH grant R37CA054358)National Institutes of Health (U.S.) (NIH grant P50HG003233)National Institutes of Health (U.S.) (NIH grant R01AI047457)National Institutes of Health (U.S.) (NIH Grant R01AI047458)National Institutes of Health (U.S.) (CA86065)National Institutes of Health (U.S.) (HL099999)Thomas and Stacey Siebel FoundationCalifornia Institute for Regenerative Medicine (Fellowship T1-00001

    Total synthesis of Escherichia coli with a recoded genome

    Get PDF
    Nature uses 64 codons to encode the synthesis of proteins from the genome, and chooses 1 sense codon—out of up to 6 synonyms—to encode each amino acid. Synonymous codon choice has diverse and important roles, and many synonymous substitutions are detrimental. Here we demonstrate that the number of codons used to encode the canonical amino acids can be reduced, through the genome-wide substitution of target codons by defined synonyms. We create a variant of Escherichia coli with a four-megabase synthetic genome through a high-fidelity convergent total synthesis. Our synthetic genome implements a defined recoding and refactoring scheme—with simple corrections at just seven positions—to replace every known occurrence of two sense codons and a stop codon in the genome. Thus, we recode 18,214 codons to create an organism with a 61-codon genome; this organism uses 59 codons to encode the 20 amino acids, and enables the deletion of a previously essential transfer RNA

    Conserved genes and pathways in primary human fibroblast strains undergoing replicative and radiation induced senescence

    Get PDF
    Additional file 3: Figure S3. Regulation of genes of Arrhythmogenic right ventricular cardiomyopathy pathway during senescence induction in HFF strains Genes of the “Arrhythmogenic right ventricular cardiomyopathy” pathway which are significantly up- (green) and down- (red) regulated (log2 fold change >1) during irradiation induced senescence (120 h after 20 Gy irradiation) in HFF strains. Orange color signifies genes which are commonly up-regulated during both, irradiation induced and replicative senescence

    Pain in platin-induced neuropathies: A systematic review and meta-analysis

    Get PDF
    INTRODUCTION: Platin-induced peripheral neuropathy (PIPN) is a common cause of PN in cancer patients. The aim of this paper is to systematically review the current literature regarding PIPN, with a particular focus on epidemiological and clinical characteristics of painful PIPN, and to discuss relevant management strategies. METHODS: A systematic computer-based literature search was conducted on the PubMed database. RESULTS: This search strategy resulted in the identification of 353 articles. After the eligibility assessment, 282 articles were excluded. An additional 24 papers were identified by scanning the reference lists. In total, 95 papers met the inclusion criteria and were used for this review. The prevalence of neuropathic symptoms due to acute toxicity of oxaliplatin was estimated at 84.6%, whereas PN established after chemotherapy with platins was estimated at 74.9%. Specifically regarding pain, the reported prevalence of pain due to acute toxicity of oxaliplatin was estimated at 55.6%, whereas the reported prevalence of chronic peripheral neuropathic pain in PIPN was estimated at 49.2%. CONCLUSION: Peripheral neuropathy is a common complication in patients receiving platins and can be particularly painful. There is significant heterogeneity among studies regarding the method for diagnosing peripheral neuropathy. Nerve conduction studies are the gold standard and should be performed in patients receiving platins and complaining of neuropathic symptoms post-treatment

    Altered Heart Rate Variability During Mobile Game Playing and Watching Self-Mobile Gaming in Individuals with Problematic Mobile Game Use: Implications for Cardiac Health

    Get PDF
    Shih-Ching Chin,1,&ast; Yun-Hsuan Chang,2– 6,&ast; Chih-Chun Huang,6,7 Ting-Hsi Chou,1 Chieh-Liang Huang,8 Hsiu-Man Lin,9 Marc N Potenza10 1Department of Psychology, Asia University, Taichung, Taiwan; 2Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; 3Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; 4Department of Psychology, National Cheng Kung University, Tainan, Taiwan; 5Institute of Genomics and Bioinformatics, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan; 6Department of Psychiatry, National Cheng Kung University Hospital, Douliou Branch, Yunlin, Taiwan; 7Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan, Taiwan; 8Department of Psychiatry, Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan; 9Department of Child and Adolescent Development and Mental Health, China Medical University Children’s Hospital, Taichung, Taiwan; 10Psychiatry, Child Study and Neuroscience, Center of Excellence in Gambling Research, Yale School of Medicine, New Haven, CT, USA&ast;These authors contributed equally to this workCorrespondence: Yun-Hsuan Chang, Licensed Clinical Psychologist, Institute of Gerontology, College of Medicine; Department of Psychology, National Cheng Kung University, No. 1., University Road, Tainan, Taiwan, Email [email protected]; [email protected]: The surge in mobile gaming, fueled by smartphone and internet accessibility, lacks a comprehensive understanding of physiological changes during gameplay.Methods: This study, involving 93 participants (average age 21.75 years), categorized them into Problematic Mobile Gaming (PMG) and non-problematic Mobile Gaming (nPMG) groups based on Problematic Mobile Gaming Questionnaire (PMGQ) scores. The PMGQ is a 12-item scale developed in Taiwan to assess symptoms of problematic mobile gaming. The research delved into heart rate variability (HRV) alterations during real-time mobile gaming and self-gaming video viewing.Results: Results showed that the PMG group significantly presents a lower root mean square of successive differences (RMSSD), and High Frequency (lnHF) than does the nPMG group (F=4.73, p=0.03; F=10.65, p=0.002, respectively) at the baseline. In addition, the PMG group significantly displayed elevated HF and low-frequency to high-frequency (LF/HF) in the mobile-gaming (F=7.59, p=0.007; F=9.31, p=0.003) condition as well as in the watching self-gaming videos (F=9.75, p=0.002; F=9.02, p=0.003) than did the nPMG.Conclusion: The study suggests targeted interventions to mitigate autonomic arousal, offering a potential avenue to address adverse effects associated with problematic mobile gaming behavior. The PMG group displayed increased craving scores after real-time mobile gaming and watching self-gaming video excerpts, unlike the nPMG group. Elevated LF/HF ratios in frequent gaming cases heightened autonomic arousal, presenting challenges in relaxation after mobile gaming. These findings contribute to a nuanced understanding of the complex interplay between mobile gaming activities, physiological responses, and potential intervention strategies.Keywords: addictive behaviors, video games, internet addiction, autonomic nervous system, craving, heart rate variability, self-regulatio
    corecore