18 research outputs found
Author response: Structures of NF-κB p52 homodimer-DNA complexes rationalize binding mechanisms and transcription activation
Structures of NF-κB p52 homodimer-DNA complexes rationalize binding mechanisms and transcription activation
AbstractThe mammalian NF-κB p52:p52 homodimer together with its cofactor Bcl3 activates transcription of κB sites with a central G/C base pair (bp), while it is inactive toward κB sites with a central A/T bp. To understand the molecular basis for this unique property of p52, we have determined its structure in complex with a P-selectin(PSel)-κB DNA (5’-GGGGTGACCCC-3’) (central bp is underlined) and variants changing the central bp to A/T or swapping the flanking bp. The structures reveal a nearly two-fold widened minor groove in the central region of the DNA as compared to all other currently available NF-κB-DNA complex structures, which have a central A/T bp. Molecular dynamics (MD) simulations show free DNAs exist in distinct preferred conformations, and p52:p52 homodimer induces the least amount of conformational changes on the more transcriptionally active natural PSel-κB DNA in the bound form. Our binding assays further demonstrate that the fast kinetics driven by entropy is correlated with higher transcriptional activity. Overall, our studies have revealed a novel conformation for κB DNA in complex with NF-κB and suggest the importance of binding kinetics, dictated by free DNA conformational and dynamic states, in controlling transcriptional activation for NF-κB.</jats:p
The role of <i>AUX1</i> during lateral root development in the domestication of the model C4 grass <i>Setaria italica</i>
AbstractC4 photosynthesis increases the efficiency of carbon fixation by spatially separating high concentrations of molecular oxygen from rubisco. The specialized leaf anatomy required for this separation evolved independently many times. C4 root systems are highly branched, an adaptation thought to support high rates of photosynthesis; however, little is known about the molecular mechanisms that have driven the evolution of C4 root system architecture (RSA). Using a mutant screen in the C4 model plant Setaria italica, we identify siaux1-1 and siaux1-2 as RSA mutants, and use CRISPR/cas9-mediated genome editing and overexpression to confirm the importance of the locus. As AUX1 is not necessary for lateral root emergence in S. viridis, the species from which S. italica was domesticated, we conducted an analysis of auxin responsive elements in the promoters of auxin-responsive gene families in S. italica, and explore the molecular basis of SiAUX1’s role in seedling development using an RNAseq analysis of wild type and siaux1-1 plants. Finally, we use a root coordinate system to compare cell-by-cell meristem structures in siaux1-1 and wild type Setaria plants, observing changes in the distribution of cell volumes in all cell layers and a dependence in the frequency of protophloem and protoxylem strands on siAUX1.</jats:p
The role of <i>AUX1</i> during lateral root development in the domestication of the model C4 grass <i>Setaria italica</i>
Abstract
C4 photosynthesis increases the efficiency of carbon fixation by spatially separating high concentrations of molecular oxygen from Rubisco. The specialized leaf anatomy required for this separation evolved independently many times. The morphology of C4 root systems is also distinctive and adapted to support high rates of photosynthesis; however, little is known about the molecular mechanisms that have driven the evolution of C4 root system architecture. Using a mutant screen in the C4 model plant Setaria italica, we identify Siaux1-1 and Siaux1-2 as root system architecture mutants. Unlike in S. viridis, AUX1 promotes lateral root development in S. italica. A cell by cell analysis of the Siaux1-1 root apical meristem revealed changes in the distribution of cell volumes in all cell layers and a dependence of the frequency of protophloem and protoxylem strands on SiAUX1. We explore the molecular basis of the role of SiAUX1 in seedling development using an RNAseq analysis of wild-type and Siaux1-1 plants and present novel targets for SiAUX1-dependent gene regulation. Using a selection sweep and haplotype analysis of SiAUX1, we show that Hap-2412TT in the promoter region of SiAUX1 is an allele which is associated with lateral root number and has been strongly selected for during Setaria domestication.</jats:p
