8,604 research outputs found
Continuous collision detection for ellipsoids
We present an accurate and efficient algorithm for continuous collision detection between two moving ellipsoids. We start with a highly optimized implementation of interference testing between two stationary ellipsoids based on an algebraic condition described in terms of the signs of roots of the characteristic equation of two ellipsoids. Then we derive a time-dependent characteristic equation for two moving ellipsoids, which enables us to develop a real-time algorithm for computing the time intervals in which two moving ellipsoids collide. The effectiveness of our approach is demonstrated with several practical examples. © 2006 IEEE.published_or_final_versio
Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle
Gut microbes might influence host metabolic homeostasis and contribute to the pathogenesis of type 2 diabetes (T2D), which is characterized by insulin resistance. Bacteria-derived extracellular vesicles (EVs) have been suggested to be important in the pathogenesis of diseases once believed to be noninfectious. Here, we hypothesize that gut microbe-derived EVs are important in the pathogenesis of T2D. In vivo administration of stool EVs from high fat diet (HFD)-fed mice induced insulin resistance and glucose intolerance compared to regular diet (RD)-fed mice. Metagenomic profiling of stool EVs by 16S ribosomal DNA sequencing revealed an increased amount of EVs derived from Pseudomonas panacis (phylum Proteobacteria) in HFD mice compared to RD mice. Interestingly, P. panacis EVs blocked the insulin signaling pathway in both skeletal muscle and adipose tissue. Moreover, isolated P. panacis EVs induced typical diabetic phenotypes, such as glucose intolerance after glucose administration or systemic insulin injection. Thus, gut microbe-derived EVs might be key players in the development of insulin resistance and impairment of glucose metabolism promoted by HFD.11148Ysciescopu
The enhanced expression of IL-17-secreting T cells during the early progression of atherosclerosis in ApoE-deficient mice fed on a western-type diet
Atherosclerosis is a chronic progressive inflammatory disorder and the leading cause of cardiovascular mortality. Here we assessed the dynamic changes of T-cell-derived cytokines, such as inteferon (IFN)-gamma, interleukin (IL)-17 and IL-4, during the progression of atherosclerosis in apolipoprotein E-null (ApoE(-/-)) mice, to understand the role of immune responses in different stages of atherosclerosis. Male ApoE(-/-) mice were fed a high-fat, western-type diet (WD: 21% lipid, 1.5% cholesterol) after 5 weeks of age and were compared with C57BL/6 wild-type control mice fed a standard chow diet. Atherosclerotic lesions appeared in the aortic sinus of ApoE(-/-) mice 4 weeks after WD and the lesions progressed and occupied > 50% of the total sinus area 16 weeks after WD. Aortic IL-17 mRNA and protein expression started to increase in ApoE(-/-) mice after 4 weeks on the WD and peaked at around 8-12 weeks on the WD. In terms of systemic expression of T-cell-derived cytokines, IL-17 production from splenocytes after anti-CD3/CD28 stimuli increased from 4 weeks on the WD, peaked at 12 weeks and returned to control levels at 16 weeks. The production of IFN-gamma and IL-4 (Th1 and Th2 cytokines, respectively) from splenocytes was delayed compared with IL-17. Taken together, the present data indicate that Th17 cell response may be involved at an early stage in the development of atherosclerosis.11911Ysciescopu
Extracellular Vesicles Derived from Gram-Negative Bacteria, such as Escherichia coli, Induce Emphysema Mainly via IL-17A-Mediated Neutrophilic Inflammation
Recent evidence indicates that Gram-negative bacteria-derived extracellular vesicles (EVs) in indoor dust can evoke neutrophilic pulmonary inflammation, which is a key pathology of chronic obstructive pulmonary disease (COPD). Escherichia coli is a ubiquitous bacterium present in indoor dust and secretes nanometer-sized vesicles into the extracellular milieu. In the current study, we evaluated the role of E. coli-derived EVs on the development of COPD, such as emphysema. E. coli EVs were prepared by sequential ultrafiltration and ultracentrifugation. COPD phenotypes and immune responses were evaluated in C57BL/6 wild-type (WT), IFN-gamma-deficient, or IL-17A-deficient mice after airway exposure to E. coli EVs. The present study showed that indoor dust from a bed mattress harbors E. coli EVs. Airway exposure to E. coli EVs increased the production of proinflammatory cytokines, such as TNF-alpha and IL-6. In addition, the repeated inhalation of E. coli EVs for 4 wk induced neutrophilic inflammation and emphysema, which are associated with enhanced elastase activity. Emphysema and elastase activity enhanced by E. coli EVs were reversed by the absence of IFN-gamma or IL-17A genes. In addition, during the early period, lung inflammation is dependent on IL-17A and TNF-alpha, but not on IFN-gamma, and also on TLR4. Moreover, the production of IFN-gamma is eliminated by the absence of IL-17A, whereas IL-17A production is not abolished by IFN-gamma absence. Taken together, the present data suggest that E. coli-derived EVs induce IL-17A-dependent neutrophilic inflammation and thereby emphysema, possibly via upregulation of elastase activity.X111613Ysciescopu
Egr-1 Activation by Cancer-Derived Extracellular Vesicles Promotes Endothelial Cell Migration via ERK1/2 and JNK Signaling Pathways
Various mammalian cells, including cancer cells, shed extracellular vesicles (EVs), also known as exosomes and microvesicles, into surrounding tissues. These EVs play roles in tumor growth and metastasis by promoting angiogenesis. However, the detailed mechanism of how cancer-derived EVs elicit endothelial cell activation remains unknown. Here, we provide evidence that early growth response-1 (Egr-1) activation in endothelial cells is involved in the angiogenic activity of colorectal cancer cell-derived EVs. Both RNA interference-mediated downregulation of Egr-1 and ERK1/2 or JNK inhibitor significantly blocked EV-mediated Egr-1 activation and endothelial cell migration. Furthermore, lipid raft-mediated endocytosis inhibitor effectively blocked endothelial Egr-1 activation and migration induced by cancer-derived EVs. Our results suggest that Egr-1 activation in endothelial cells may be a key mechanism involved in the angiogenic activity of cancer-derived EVs. These findings will improve our understanding regarding the proangiogenic activities of EVs in diverse pathological conditions including cancer, cardiovascular diseases, and neurodegenerative diseases.open11617sciescopu
Active Immunization with Extracellular Vesicles Derived from Staphylococcus aureus Effectively Protects against Staphylococcal Lung Infections, Mainly via Th1 Cell-Mediated Immunity
Staphylococcus aureus is an important pathogenic bacterium that causes various infectious diseases. Extracellular vesicles (EVs) released from S. aureus contain bacterial proteins, nucleic acids, and lipids. These EVs can induce immune responses leading to similar symptoms as during staphylococcal infection condition and have the potential as vaccination agent. Here, we show that active immunization (vaccination) with S. aureus-derived EVs induce adaptive immunity of antibody and T cell responses. In addition, these EVs have the vaccine adjuvant ability to induce protective immunity such as the up-regulation of co-stimulatory molecules and the expression of T cell polarizing cytokines in antigen-presenting cells. Moreover, vaccination with S. aureus EVs conferred protection against lethality induced by airway challenge with lethal dose of S. aureus and also pneumonia induced by the administration of sub-lethal dose of S. aureus. These protective effects were also found in mice that were adoptively transferred with splenic T cells isolated from S. aureus EV-immunized mice, but not in serum transferred mice. Furthermore, this protective effect of S. aureus EVs was significantly reduced by the absence of interferon-gamma, but not by the absence of interleukin-17. Together, the study herein suggests that S. aureus EVs are a novel vaccine candidate against S. aureus infections, mainly via Th1 cellular response.111814Ysciescopu
Superconductivity below 20 K in heavily electron-doped surface layer of FeSe bulk crystal
A superconducting transition temperature (T-c) as high as 100 K was recently discovered in one monolayer FeSe grown on SrTiO3. The discovery ignited efforts to identify the mechanism for the markedly enhanced T-c from its bulk value of 8 K. There are two main views about the origin of the T-c enhancement: interfacial effects and/or excess electrons with strong electron correlation. Here, we report the observation of superconductivity below 20 K in surface electron-doped bulk FeSe. The doped surface layer possesses all the key spectroscopic aspects of the monolayer FeSe on SrTiO3. Without interfacial effects, the surface layer state has a moderate T-c of 20 K with a smaller gap opening of 4.2 meV. Our results show that excess electrons with strong correlation cannot induce the maximum T-c, which in turn reveals the need for interfacial effects to achieve the highest T-c in one monolayer FeSe on SrTiO3.1116Ysciescopu
Atomic Layer Deposition of Ni Thin Films and Application to Area-Selective Deposition
Ni thin films were deposited by atomic layer deposition (ALD) using bis(dimethylamino-2-methyl-2-butoxo)nickel [Ni(dmamb)(2)] as a precursor and NH3 gas as a reactant. The growth characteristics and film properties of ALD Ni were investigated. Low-resistivity films were deposited on Si and SiO2 substrates, producing high-purity Ni films with a small amount of oxygen and negligible amounts of nitrogen and carbon. Additionally, ALD Ni showed excellent conformality in nanoscale via holes. Utilizing this conformality, Ni/Si core/shell nanowires with uniform diameters were fabricated. By combining ALD Ni with octadecyltrichlorosilane (OTS) self-assembled monolayer as a blocking layer, area-selective ALD was conducted for selective deposition of Ni films. When performed on the prepatterned OTS substrate, the Ni films were selectively coated only on OTS-free regions, building up Ni line patterns with 3 mu m width. Electrical measurement results showed that all of the Ni lines were electrically isolated, also indicating the selective Ni deposition. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3504196] All rights reserved.ope
- …
