10 research outputs found

    Supersymmetry of hyperbolic monopoles

    Get PDF
    We investigate what supersymmetry says about the geometry of the moduli space of hyperbolic monopoles. We construct a three-dimensional supersymmetric Yang-Mills-Higgs theory on hyperbolic space whose half-BPS configurations coincide with (complexified) hyperbolic monopoles. We then study the action of the preserved supersymmetry on the collective coordinates and show that demanding closure of the supersymmetry algebra constraints the geometry of the moduli space of hyperbolic monopoles, turning it into a so-called pluricomplex manifold, thus recovering a recent result of Bielawski and Schwachh\"ofer.Comment: 22 page

    Nonlinearity and Topology

    Full text link
    The interplay of nonlinearity and topology results in many novel and emergent properties across a number of physical systems such as chiral magnets, nematic liquid crystals, Bose-Einstein condensates, photonics, high energy physics, etc. It also results in a wide variety of topological defects such as solitons, vortices, skyrmions, merons, hopfions, monopoles to name just a few. Interaction among and collision of these nontrivial defects itself is a topic of great interest. Curvature and underlying geometry also affect the shape, interaction and behavior of these defects. Such properties can be studied using techniques such as, e.g. the Bogomolnyi decomposition. Some applications of this interplay, e.g. in nonreciprocal photonics as well as topological materials such as Dirac and Weyl semimetals, are also elucidated

    Iterated ϕ4 kinks

    No full text
    corecore