32 research outputs found

    Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing

    Get PDF
    Two bottlenecks impeding the genetic analysis of complex traits in rodents are access to mapping populations able to deliver gene-level mapping resolution and the need for population-specific genotyping arrays and haplotype reference panels. Here we combine low-coverage (0.15×) sequencing with a new method to impute the ancestral haplotype space in 1,887 commercially available outbred mice. We mapped 156 unique quantitative trait loci for 92 phenotypes at a 5% false discovery rate. Gene-level mapping resolution was achieved at about one-fifth of the loci, implicating Unc13c and Pgc1a at loci for the quality of sleep, Adarb2 for home cage activity, Rtkn2 for intensity of reaction to startle, Bmp2 for wound healing, Il15 and Id2 for several T cell measures and Prkca for bone mineral content. These findings have implications for diverse areas of mammalian biology and demonstrate how genome-wide association studies can be extended via low-coverage sequencing to species with highly recombinant outbred populations

    Recent advances and future directions in soils and sediments research

    Full text link
    In 2010, the Journal of Soils and Sediments (JSS) reached a milestone: its 10th anniversary. This prompted us to think about where the academic community has come in its understanding of the behaviour of soils and sediments within landscapes. The rapid growth of the journal and the number of papers published in it, and other related journals, suggests, probably correctly, that there is much interest in the topics of soils and sediments. In the January 2011 editorial (Xu and Owens 2011), we presented an overview of some of the main developments in the past 10 years and provided some future directions of JSS for 2011 and beyond. In that editorial we indicated that a more comprehensive editorial would be published in the journal on the recent advances and future directions of soils and sediments research. The following sections are presented to fulfill this commitment and start a dialogue with the journal subject editors, authors and readers in these important areas of soils and sediments research. The dawn of the next decade of JSS is a good time to reflect on progress to-date and, more importantly, to consider where research needs to go in the years ahead; a time of rapid environment change, a time of rapid population growth, and a time when society is increasingly looking to science to provide the understanding (and solutions) to the problems that we face.No Full Tex

    Tomato spotted wilt virus benefits a non-vector arthropod, Tetranychus urticae, by modulating different plant responses in tomato

    Get PDF
    Citation: Nachappa P, Margolies DC, Nechols JR, Whitfield AE, Rotenberg D (2013) Tomato Spotted Wilt Virus Benefits a Non-Vector Arthropod, Tetranychus Urticae, by Modulating Different Plant Responses in Tomato. PLoS ONE 8(9): e75909. doi:10.1371/journal.pone.0075909The interaction between plant viruses and non-vector arthropod herbivores is poorly understood. However, there is accumulating evidence that plant viruses can impact fitness of non-vector herbivores. In this study, we used oligonucleotide microarrays, phytohormone, and total free amino acid analyses to characterize the molecular mechanisms underlying the interaction between Tomato spotted wilt virus (TSWV) and a non-vector arthropod, twospotted spider mite (Tetranychus urticae), on tomato plants, Solanum lycopersicum. Twospotted spider mites showed increased preference for and fecundity on TSWV-infected plants compared to mock-inoculated plants. Transcriptome profiles of TSWV-infected plants indicated significant up-regulation of salicylic acid (SA)-related genes, but no apparent down-regulation of jasmonic acid (JA)-related genes which could potentially confer induced resistance against TSM. This suggests that there was no antagonistic crosstalk between the signaling pathways to influence the interaction between TSWV and spider mites. In fact, SA- and JA-related genes were up-regulated when plants were challenged with both TSWV and the herbivore. TSWV infection resulted in down-regulation of cell wall-related genes and photosynthesis-associated genes, which may contribute to host plant susceptibility. There was a three-fold increase in total free amino acid content in virus-infected plants compared to mock-inoculated plants. Total free amino acid content is critical for arthropod nutrition and may, in part, explain the apparent positive indirect effect of TSWV on spider mites. Taken together, these data suggest that the mechanism(s) of increased host suitability of TSWV-infected plants to non-vector herbivores is complex and likely involves several plant biochemical processes

    Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing

    No full text
    Two bottlenecks impeding the genetic analysis of complex traits in rodents are access to mapping populations able to deliver gene-level mapping resolution, and the need for population specific genotyping arrays and haplotype reference panels. Here we combine low coverage sequencing (0.15X) with a novel method to impute the ancestral haplotype space in 1,887 commercially available outbred mice. We mapped 156 unique quantitative trait loci for 92 phenotypes at 5% false discovery rate. Gene-level mapping resolution was achieved at about a fifth of loci, implicating Unc13c and Pgc1-alpha at loci for the quality of sleep, Adarb2 for home cage activity, Rtkn2 for intensity of reaction to startle, Bmp2 for wound healing, Il15 and Id2 for several T-cell measures and Prkca for bone mineral content. These findings have implications for diverse areas of mammalian biology and demonstrate how GWAS can be extended via low-coverage sequencing to species with highly recombinant outbred populations
    corecore