560 research outputs found

    The incidence of liver injury in Uyghur patients treated for TB in Xinjiang Uyghur autonomous region, China, and its association with hepatic enzyme polymorphisms nat2, cyp2e1, gstm1 and gstt1.

    Get PDF
    BACKGROUND AND OBJECTIVE: Of three first-line anti-tuberculosis (anti-TB) drugs, isoniazid is most commonly associated with hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, NAT2, CYP2E1, GSTM1and GSTT1, that code for drug-metabolizing enzymes. This study evaluated whether the polymorphisms in these enzymes were associated with an increased risk of anti-TB drug-induced hepatitis in patients and could potentially be used to identify patients at risk of liver injury. METHODS AND DESIGN: In a cross-sectional study, 2244 tuberculosis patients were assessed two months after the start of treatment. Anti-TB drug-induced liver injury (ATLI) was defined as an ALT, AST or bilirubin value more than twice the upper limit of normal. NAT2, CYP2E1, GSTM1 and GSTT1 genotypes were determined using the PCR/ligase detection reaction assays. RESULTS: 2244 patients were evaluated, there were 89 cases of ATLI, a prevalence of 4% 9 patients (0.4%) had ALT levels more than 5 times the upper limit of normal. The prevalence of ATLI was greater among men than women, and there was a weak association with NAT2*5 genotypes, with ATLI more common among patients with the NAT2*5*CT genotype. The sensitivity of the CT genotype for identifying patients with ATLI was 42% and the positive predictive value 5.9%. CT ATLI was more common among slow acetylators (prevalence ratio 2.0 (95% CI 0.95,4.20) )compared to rapid acetylators. There was no evidence that ATLI was associated with CYP2E1 RsaIc1/c1genotype, CYP2E1 RsaIc1/c2 or c2/c2 genotypes, or GSTM1/GSTT1 null genotypes. CONCLUSIONS: In Xinjiang Uyghur TB patients, liver injury was associated with the genetic variant NAT2*5, however the genetic markers studied are unlikely to be useful for screening patients due to the low sensitivity and low positive predictive values for identifying persons at risk of liver injury

    Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)

    Get PDF
    Focusing of light in the diffusive regime inside scattering media has long been considered impossible. Recently, this limitation has been overcome with time reversal of ultrasound-encoded light (TRUE), but the resolution of this approach is fundamentally limited by the large number of optical modes within the ultrasound focus. Here, we introduce a new approach, time reversal of variance-encoded light (TROVE), which demixes these spatial modes by variance encoding to break the resolution barrier imposed by the ultrasound. By encoding individual spatial modes inside the scattering sample with unique variances, we effectively uncouple the system resolution from the size of the ultrasound focus. This enables us to demonstrate optical focusing and imaging with diffuse light at an unprecedented, speckle-scale lateral resolution of ~5 µm

    Signalling mechanisms mediating Zn2+-induced TRPM2 channel activation and death cell in microglial cells

    Get PDF
    Excessive Zn2+ causes brain damage via promoting ROS generation. Here we investigated the role of ROS-sensitive TRPM2 channel in H2O2/Zn2+-induced Ca2+ signalling and cell death in microglial cells. H2O2/Zn2+ induced concentration-dependent increases in cytosolic Ca2+ concentration ([Ca2+]c), which was inhibited by PJ34, a PARP inhibitor, and abolished by TRPM2 knockout (TRPM2-KO). Pathological concentrations of H2O2/Zn2+ induced substantial cell death that was inhibited by PJ34 and DPQ, PARP inhibitors, 2-APB, a TRPM2 channel inhibitor, and prevented by TRPM2-KO. Further analysis indicate that Zn2+ induced ROS production, PARP-1 stimulation, increase in the [Ca2+]c and cell death, which were suppressed by chelerythrine, a protein kinase C inhibitor, DPI, a NADPH-dependent oxidase (NOX) inhibitor, GKT137831, a NOX1/4 inhibitor, and Phox-I2, a NOX2 inhibitor. Furthermore, Zn2+-induced PARP-1 stimulation, increase in the [Ca2+]c and cell death were inhibited by PF431396, a Ca2+-sensitive PYK2 inhibitor, and U0126, a MEK/ERK inhibitor. Taken together, our study shows PKC/NOX-mediated ROS generation and PARP-1 activation as an important mechanism in Zn2+-induced TRPM2 channel activation and, TRPM2-mediated increase in the [Ca2+]c to trigger the PYK2/MEK/ERK signalling pathway as a positive feedback mechanism that amplifies the TRPM2 channel activation. Activation of these TRPM2-depenent signalling mechanisms ultimately drives Zn2+-induced Ca2+ overloading and cell death

    Highway increases concentrations of toxic metals in giant panda habitat

    Get PDF
    The Qinling panda subspecies (Ailuropoda melanoleuca qinlingensis) is highly endangered with fewer than 350 individuals inhabiting the Qinling Mountains. Previous studies have indicated that giant pandas are exposed to heavy metals, and a possible source is vehicle emission. The concentrations of Cu, Zn, Mn, Pb, Cr, Ni, Cd, Hg, and As in soil samples collected from sites along a major highway bisecting the panda's habitat were analyzed to investigate whether the highway was an important source of metal contamination. There were 11 sites along a 30-km stretch of the 108th National Highway, and at each site, soil samples were taken at four distances from the highway (0, 50, 100, and 300 m) and at three soil depths (0, 5, 10 cm). Concentrations of all metals except As exceeded background levels, and concentrations of Cu, Zn, Mn, Pb, and Cd decreased significantly with increasing distance from the highway. Geo-accumulation index indicated that topsoil next to the highway was moderately contaminated with Pb and Zn, whereas topsoil up to 300 m away from the highway was extremely contaminated with Cd. The potential ecological risk index demonstrated that this area was in a high degree of ecological hazards, which were also due to serious Cd contamination. And, the hazard quotient indicated that Cd, Pb, and Mn especially Cd could pose the health risk to giant pandas. Multivariate analyses demonstrated that the highway was the main source of Cd, Pb, and Zn and also put some influence on Mn. The study has confirmed that traffic does contaminate roadside soils and poses a potential threat to the health of pandas. This should not be ignored when the conservation and management of pandas is considered

    An intuitionistic fuzzy programming method for group decision making with interval-valued fuzzy preference relations

    Get PDF
    The paper develops a new intuitionistic fuzzy (IF) programming method to solve group decision making (GDM) problems with interval-valued fuzzy preference relations (IVFPRs). An IF programming problem is formulated to derive the priority weights of alternatives in the context of additive consistent IVFPR. In this problem, the additive consistent conditions are viewed as the IF constraints. Considering decision makers’ (DMs’) risk attitudes, three approaches, including the optimistic, pessimistic and neutral approaches, are proposed to solve the constructed IF programming problem. Subsequently, a new consensus index is defined to measure the similarity between DMs according to their individual IVFPRs. Thereby, DMs’ weights are objectively determined using the consensus index. Combining DMs’ weights with the IF program, a corresponding IF programming method is proposed for GDM with IVFPRs. An example of E-Commerce platform selection is analyzed to illustrate the feasibility and effectiveness of the proposed method. Finally, the IF programming method is further extended to the multiplicative consistent IVFPR

    Replication and Fine Mapping for Association of the C2orf43, FOXP4, GPRC6A and RFX6 Genes with Prostate Cancer in the Chinese Population

    Get PDF
    Prostate cancer represents the leading cause of male death across the world. A recent genome-wide association study (GWAS) identified five novel susceptibility loci for prostate cancer in the Japanese population. This study is to replicate and fine map the potential association of these five loci with prostate cancer in the Chinese Han population.In Phase I of the study, we tested the five single nucleotide polymorphisms (SNPs) which showed the strongest association evidence in the original GWAS in Japanese. The study sample consists of 1,169 Chinese Hans, comprising 483 patients and 686 healthy controls. Then in phase II, flanking SNPs of the successfully replicated SNPs in Phase I were genotyped and tested for association with prostate cancer to fine map those significant association signals.We successfully replicated the association of rs13385191 (located in the C2orf43 gene, P = 8.60×10(-5)), rs12653946 (P = 1.33×10(-6)), rs1983891 (FOXP4, P = 6.22×10(-5)), and rs339331 (GPRC6A/RFX6, P = 1.42×10(-5)) with prostate cancer. The most significant odds ratio (OR) was recorded as 1.41 (95% confidence interval 1.18-1.68) for rs12653946. Rs9600079 did not show significant association (P = 8.07×10(-2)) with prostate cancer in this study. The Phase II study refined these association signals, and identified several SNPs showing more significant association with prostate cancer than the very SNPs tested in Phase I.Our results provide further support for association of the C2orf43, FOXP4, GPRC6A and RFX6 genes with prostate cancer in Eastern Asian populations. This study also characterized the novel loci reported in the original GWAS with more details. Further work is still required to determine the functional variations and finally clarify the underlying biological mechanisms

    Phthalate esters contamination in soil and plants on agricultural land near an electronic waste recycling site

    Get PDF
    The accumulation of phthalic acid esters (PAEs) in soil and plants in agricultural land near an electronic waste recycling site in east China has become a great threat to the neighboring environmental quality and human health. Soil and plant samples collected from land under different utilization, including fallow plots, vegetable plots, plots with alfalfa (Medicago sativa L.) as green manure, fallow plots under long-term flooding and fallow plots under alternating wet and dry periods, together with plant samples from relative plots were analyzed for six PAE compounds nominated as prior pollutants by USEPA. In the determined samples, the concentrations of six target PAE pollutants ranged from 0.31-2.39 mg/kg in soil to 1.81-5.77 mg/kg in various plants (dry weight/DW), and their bioconcentration factors (BCFs) ranged from 5.8 to 17.9. Health risk assessments were conducted on target PAEs, known as typical environmental estrogen analogs, based on their accumulation in the edible parts of vegetables. Preliminary risk assessment to human health from soil and daily vegetable intake indicated that DEHP may present a high-exposure risk on all ages of the population in the area by soil ingestion or vegetable consumption. The potential damage that the target PAE compounds may pose to human health should be taken into account in further comprehensive risk assessments in e-waste recycling sites areas. Moreover, alfalfa removed substantial amounts of PAEs from the soil, and its use can be considered a good strategy for in situ remediation of PAEs

    Thermal infrared emission reveals the Dirac point movement in biased graphene

    Full text link
    Graphene is a 2-dimensional material with high carrier mobility and thermal conductivity, suitable for high-speed electronics. Conduction and valence bands touch at the Dirac point. The absorptivity of single-layer graphene is 2.3%, nearly independent of wavelength. Here we investigate the thermal radiation from biased graphene transistors. We find that the emission spectrum of single-layer graphene follows that of a grey body with constant emissivity (1.6 \pm 0.8)%. Most importantly, we can extract the temperature distribution in the ambipolar graphene channel, as confirmed by Stokes/anti-Stokes measurements. The biased graphene exhibits a temperature maximum whose location can be controlled by the gate voltage. We show that this peak in temperature reveals the spatial location of the minimum in carrier density, i.e. the Dirac point.Comment: Accepted in principle at Nature Nanotechnolog
    corecore