1,658 research outputs found

    Hydraulic lift in Populus euphratica Oliv. from the desert riparian vegetation of the Tarim River Basin

    Get PDF
    In the Tarim River Basin, the desert riparian forest vegetation is under high-temperature and aridity stress However, the vegetation can grow continuously because of deep rooting that can reach groundwater, which can thus redistribute water into the upper soil profile This paper describes patterns of hydraulic lift by Populus euphranca Oliv and discusses its ecological effects. Our results show that the tap root sap velocity of P euphranca Oliv is positive during the day and night However, a reverse sap flow was observed in the lateral roots during the night The soil water content of the subsoil was higher than that of the topsoil at depths of 0-120 cm When the sap flow of the lateral roots was reversed at night, the soil water content clearly increased. In particular, at depths of 60-120 cm, the soil water content at 4 00 was 28-38% greater than that at 16 00 The vapor pressure deficit was a factor that predominantly affected the root sap velocity, and the smaller vapor pressure deficit often facilitated a reverse sap flow in the lateral roots. Our findings demonstrate the hydraulic lift characteristics and ecological effects that occur in the desert riparian forest in extremely and regions of middle Asia (C) 2010 Elsevier Ltd. All rights reserve

    Significance of temperature and soil water content on soil respiration in three desert ecosystems in Northwest China

    Get PDF
    It is crucial to understand how abiotic factors influence soil respiration and to determine, in a quantitative manner, the site variation of abiotic regulators in desert ecosystems. In this study, soil respiration was measured using an automated CO2 efflux system (LI-COR 8100) in 2005 and 2006. Additionally, the effects of soil temperature, moisture and a short-term precipitation manipulation on the rate of soil respiration were examined in Haloxylon ammodendron, Anabasis aphylla and Halostachys caspica in three distinct desert ecosystems. The difference in soil respiration among sites was significant. Air temperature explained 35-65% of the seasonal changes in soil respiration when an exponential equation was used. The effect of temperature on soil respiration and temperature sensitivity was stronger at sites with higher soil moisture. Soil respiration was significantly positively correlated with soil moisture. Amounts of variation in soil respiration explained by temperature and gravimetric water content were 41-44% in H. ammodendron, 62-65% in A. aphylla and 67-84% in H. caspica sites. Artificial rainfall treatments of 5 mm, 2.5 mm and 0 mm (control) were conducted. Soil respiration increased in a small pulse following rainfall. Temperature dominantly influenced soil respiration and soil water content enhanced the response of respiration to temperature. (C) 2010 Elsevier Ltd. All rights reserved

    Immuno-targeting the multifunctional CD38 using nanobody

    Get PDF
    published_or_final_versio

    Thermopower of the Correlated Narrow Gap Semiconductor FeSi and Comparison to RuSi

    Full text link
    Iron based narrow gap semiconductors such as FeSi, FeSb2, or FeGa3 have received a lot of attention because they exhibit a large thermopower, as well as striking similarities to heavy fermion Kondo insulators. Many proposals have been advanced, however, lacking quantitative methodologies applied to this problem, a consensus remained elusive to date. Here, we employ realistic many-body calculations to elucidate the impact of electronic correlation effects on FeSi. Our methodology accounts for all substantial anomalies observed in FeSi: the metallization, the lack of conservation of spectral weight in optical spectroscopy, and the Curie susceptibility. In particular we find a very good agreement for the anomalous thermoelectric power. Validated by this congruence with experiment, we further discuss a new physical picture of the microscopic nature of the insulator-to-metal crossover. Indeed, we find the suppression of the Seebeck coefficient to be driven by correlation induced incoherence. Finally, we compare FeSi to its iso-structural and iso-electronic homologue RuSi, and predict that partially substituted Fe(1-x)Ru(x)Si will exhibit an increased thermopower at intermediate temperatures.Comment: 14 pages. Proceedings of the Hvar 2011 Workshop on 'New materials for thermoelectric applications: theory and experiment

    GDF15: Immunomodulatory Role in Hepatocellular Carcinoma Pathogenesis and Therapeutic Implications

    Get PDF
    Yi-Ning Du,1 Jin-Wei Zhao2 1Department of Medical Sciences, Li Ka-shing School of Medicine, University of Hong Kong, Hong Kong, People’s Republic of China; 2Department of Hepatopancreatobiliary Surgery, Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, People’s Republic of ChinaCorrespondence: Jin-Wei Zhao, Department of Hepatopancreatobiliary Surgery, Second Hospital of Jilin University, Jilin University, No. 218, Ziqiang Road, Changchun, 130000, Jilin Province, People’s Republic of China, Tel +8615844089385, Email [email protected]: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths globally and the sixth most common cancer worldwide. Evidence shows that growth differentiation factor 15 (GDF15) contributes to hepatocarcinogenesis through various mechanisms. This paper reviews the latest insights into the role of GDF15 in the development of HCC, its role in the immune microenvironment of HCC, and its molecular mechanisms in metabolic dysfunction associated steatohepatitis (MASH) and metabolic associated fatty liver disease (MAFLD)-related HCC. Additionally, as a serum biomarker for HCC, diagnostic and prognostic value of GDF15 for HCC is summarized. The article elaborates on the immunological effects of GDF15, elucidating its effects on hepatic stellate cells (HSCs), liver fibrosis, as well as its role in HCC metastasis and tumor angiogenesis, and its interactions with anticancer drugs. Based on the impact of GDF15 on the immune response in HCC, future research should identify its signaling pathways, affected immune cells, and tumor microenvironment interactions. Clinical studies correlating GDF15 levels with patient outcomes can aid personalized treatment. Additionally, exploring GDF15-targeted therapies with immunotherapies could improve anti-tumor responses and patient outcomes.Keywords: growth differentiation factor 15, GDF15, hepatocellular carcinoma, HCC, immune suppression, immunotherap

    Model-based assessment of chromate reduction and nitrate effect in a methane-based membrane biofilm reactor

    Full text link
    © 2019 Zhejiang University Chromate contamination can pose a high risk to both the environment and public health. Previous studies have shown that CH4-based membrane biofilm reactor (MBfR) is a promising method for chromate removal. In this study, we developed a multispecies biofilm model to study chromate reduction and its interaction with nitrate reduction in a CH4-based MBfR. The model-simulated results were consistent with the experimental data reported in the literature. The model showed that the presence of nitrate in the influent promoted the growth of heterotrophs, while suppressing methanotrophs and chromate reducers. Moreover, it indicated that a biofilm thickness of 150 μm and an influent dissolved oxygen concentration of 0.5 mg O2/L could improve the reactor performance by increasing the chromate removal efficiency under the simulated conditions

    Recent changes of water discharge and sediment load in the Yellow River basin, China

    Get PDF
    The Yellow River basin contributes approximately 6% of the sediment load from all river systems globally, and the annual runoff directly supports 12% of the Chinese population. As a result, describing and understanding recent variations of water discharge and sediment load under global change scenarios are of considerable importance. The present study considers the annual hydrologic series of the water discharge and sediment load of the Yellow River basin obtained from 15 gauging stations (10 mainstream, 5 tributaries). The Mann-Kendall test method was adopted to detect both gradual and abrupt change of hydrological series since the 1950s. With the exception of the area draining to the Upper Tangnaihai station, results indicate that both water discharge and sediment load have decreased significantly (p<0.05). The declining trend is greater with distance downstream, and drainage area has a significant positive effect on the rate of decline. It is suggested that the abrupt change of the water discharge from the late 1980s to the early 1990s arose from human extraction, and that the abrupt change in sediment load was linked to disturbance from reservoir construction.Geography, PhysicalGeosciences, MultidisciplinarySCI(E)43ARTICLE4541-5613

    Fast-Response Calmodulin-Based Fluorescent Indicators Reveal Rapid Intracellular Calcium Dynamics

    Get PDF
    Faithful reporting of temporal patterns of intracellular Ca 2 + dynamics requires the working range of indicators to match the signals. Current genetically encoded calmodulin-based fluorescent indicators are likely to distort fast Ca 2 + signals by apparent saturation and integration due to their limiting fluorescence rise and decay kinetics. A series of probes was engineered with a range of Ca 2 + affinities and accelerated kinetics by weakening the Ca 2 + -calmodulin-peptide interactions. At 37 °C, the GCaMP3-derived probe termed GCaMP3 fast is 40-fold faster than GCaMP3 with Ca 2 + decay and rise times, t 1/2 , of 3.3 ms and 0.9 ms, respectively, making it the fastest to-date. GCaMP3 fast revealed discreet transients with significantly faster Ca 2 + dynamics in neonatal cardiac myocytes than GCaMP6f. With 5-fold increased two-photon fluorescence cross-section for Ca 2 + at 940 nm, GCaMP3 fast is suitable for deep tissue studies. The green fluorescent protein serves as a reporter providing important novel insights into the kinetic mechanism of target recognition by calmodulin. Our strategy to match the probe to the signal by tuning the affinity and hence the Ca 2 + kinetics of the indicator is applicable to the emerging new generations of calmodulin-based probe

    BAY61-3606 Affects the Viability of Colon Cancer Cells in a Genotype-Directed Manner

    Get PDF
    Background: K-RAS mutation poses a particularly difficult problem for cancer therapy. Activating mutations in K-RAS are common in cancers of the lung, pancreas, and colon and are associated with poor response to therapy. As such, targeted therapies that abrogate K-RAS-induced oncogenicity would be of tremendous value. Methods: We searched for small molecule kinase inhibitors that preferentially affect the growth of colorectal cancer cells expressing mutant K-RAS. The mechanism of action of one inhibitor was explored using chemical and genetic approaches. Results: We identified BAY61-3606 as an inhibitor of proliferation in colorectal cancer cells expressing mutant forms of K-RAS, but not in isogenic cells expressing wild-type K-RAS. In addition to its anti-proliferative effects in mutant cells, BAY61-3606 exhibited a distinct biological property in wild-type cells in that it conferred sensitivity to inhibition of RAF. In this context, BAY61-3606 acted by inhibiting MAP4K2 (GCK), which normally activates NFκβ signaling in wild-type cells in response to inhibition of RAF. As a result of MAP4K2 inhibition, wild-type cells became sensitive to AZ-628, a RAF inhibitor, when also treated with BAY61-3606. Conclusions: These studies indicate that BAY61-3606 exerts distinct biological activities in different genetic contexts

    Experimental studies of e + e -→ some charmless processes containing K S0 at √s = 3.773 and 3.65 GeV

    Get PDF
    We measure the observed cross sections for the charmless processes e + e -→K S0 K - K - K + π ++ c.c., K S0 K - π + η+c.c., K S0 K - π + π + π - η+c.c., K S0 K - K - K + π + η+c.c., K S0 K - K - K + π + π 0+c.c., K S0 K - ρ ++c.c. and K S0 K - π + ρ 0+c.c. We also extract upper limits on the branching fractions for ψ(3770) decays into these final states at 90% C.L. Analyzed data samples correspond to 17.3 pb-1 and 6.5 pb-1 integrated luminosities registered, respectively, at √s = 3.773 and 3.65 GeV, with the BES-II detector at the BEPC collider. © 2009 Springer-Verlag / Società Italiana di Fisica.published_or_final_versionSpringer Open Choice, 21 Feb 201
    corecore